बी.टी.सी. (चतुर्थ) पाठ्यक्रमानुसार

(बेसिक टीचर सर्टीफिकेट) सेवापूर्व शिक्षक प्रशिक्षुओं के लिए पाठ्यपुस्तक

विज्ञान चतुर्थ सेमेस्टर

राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद्, उ.प्र., लखनऊ राज्य विज्ञान शिक्षा संस्थान, उ.प्र., इलाहाबाद संरक्षक - श्रीमती डिम्पल वर्मा आई.ए.एस, प्रमुख सचिव बेसिक शिक्षा, उ.प्र. शासन लखनऊ

परामर्श – श्रीमती शीतल वर्मा, आई.ए.एस., राज्य परियोजना निदेशक, उ.प्र. सभी के लिए शिक्षा परियोजना परिषद्, लखनऊ

निर्देशक – श्री सर्वेन्द्र विक्रम बहादुर सिंह, निदेशक, राज्य शैक्षिक अनुसंधान और प्रशिक्षण परिषद्, उ.प्र., लखनऊ

समन्वयक - श्रीमती नीना श्रीवास्तव, निदेशक, राज्य विज्ञान शिक्षा संस्थान, उ.प्र., इलाहाबाद

लेखक – श्री रामा नन्द चौधरी, श्रीमती रीता सक्सेना, श्रीमती मीता बनर्जी श्रीमती विभा दुबे, श्रीमती मन्जूषा गुप्ता एवं श्रीमती ममता दूबे।

कम्प्यूटर ले आउट-कॉमर्शियल प्रेस, इलाहाबाद

प्राक्कथन

समय-समय पर सामाजिक बदलाव और उसके अनुरूप आवश्यकताओं को ध्यान में रखते हुए शिक्षा-प्रणाली तथा पाठ्यक्रमों में भी संशोधन एवं युगानुरूप परिवर्तन करने की आवश्यकता शिक्षा-विदों द्वारा अनुभव किया जाना एक स्वाभाविक प्रक्रिया है। इसी के अन्तर्गत राष्ट्रीय पाठ्यचर्या की रूपरेखा 2005 तथा शिक्षक-शिक्षा की राष्ट्रीय पाठ्यचर्या की रूपरेखा 2009 के आलोक में उत्तर प्रदेश में प्राथमिक कक्षाओं के शिक्षकों हेतु सेवापूर्व प्रशिक्षण की केन्द्र पुरोनिधानित शिक्षक-शिक्षा योजना लागू की गयी है। इसके अन्तर्गत बी.टी.सी. के दो वर्षीय पाठ्यचर्या का पुनरीक्षण कर समावेशी विभिन्न विषयों के पाठ्यक्रमों को समुन्नत किया गया है तथा प्रशिक्षु शिक्षकों से यह अपेक्षा की गयी है कि वे बिना किसी भय के शिक्षार्थियों के ज्ञानार्जन में उनकी सहायता कर सकें। नवीन पाठ्यचर्या एवं पाठ्यक्रमों के सिन्नहित उद्देश्यों को दृष्टिगत कर राज्य विज्ञान शिक्षा संस्थान, उ.प्र., इलाहाबाद द्वारा विज्ञान एवं गणित विषयों की पाठ्य-पुस्तकों का सृजन किया गया है।

पाठ्यपुस्तकों की संरचना करते समय इस बात को विशेष महत्त्व देते हुए भरपूर प्रयास किया गया है कि प्रशिक्षित शिक्षक की ओजभरी वाणी में इतना आकर्षण एवं शक्ति हो कि वह शिक्षाग्रहण करने वाले प्रशिक्षणार्थियों के मन की समस्त दुविधाओं को दूर कर उनकी बुद्धि का पूरा लाभ उन्हें प्रदान कर सके तथा वह गुरुजनों को अपने माता-पिता के समान अपना सच्चा मार्गदर्शक समझकर उनके द्वारा प्रदत्त ज्ञान को प्राप्त कर सके।

विज्ञान और गणित विषय ही समाज को मानव जीवन को जीवन्त बनाने, उसे सब प्रकार के भौतिक सुखों से आप्लावित करने, भविष्य की सुखदयोजनाओं की संकल्पना करने, उसका ब्लू-प्रिन्ट तैयार कर उसे कार्यान्वित करने का सार्थक स्वप्न दिखाते हैं। इन स्वप्नों को साकार करने के बीज जब प्राथमिक और उच्च प्राथमिक स्तर पर बच्चों के उर्वर मन में बो दिया जाता है तथा शिक्षक की वाणी की ज्ञान गंगा जब उन्हें निरन्तर सींचती रहती है, तो उसी में से एक दिन रमन, जगदीश चन्द्रबोस जैसे महान वैज्ञानिक तथा रामानुजन, शकुन्तला जैसे महान गणितज्ञ पैदा होते हैं। यह मानकर चिलए कि हमारे विद्या मन्दिर के प्रत्येक बालक-बालिका के उर में एक वैज्ञानिक, एक गणितज्ञ सोया हुआ है, बस आवश्यकता है कि उसे कैसे जगायें, कैसे ऊर्जा स्थित करें और कैसे सृजनात्मकता के पाठ पढाये और कैसे उसे ज्ञान, बोध, अनुप्रयोग और कौशल के सारे गुर सिखायें कि वह आगे चलकर अपनी अद्भुत प्रतिभा से राष्ट्र को समुन्नत करने का बीड़ा उठा सके।

सीमित समयान्तर्गत गणित विषय की पाठ्यपुस्तक को आकर्षक कलेवर प्रदान करने में हमें श्री सर्वेन्द्र विक्रम बहादुर सिंह निदेशक, राज्य शैक्षिक अनुसन्धान और प्रशिक्षण परिषद्, उत्तर प्रदेश, लखनऊ का समय-समय पर जो अत्यन्त उपयोगी मार्ग दर्शन प्राप्त हुआ है, उसके लिए में उनके प्रति हार्दिक कृतज्ञता ज्ञापित करती हूँ। पाठ्य-पुस्तक के प्रणयन में लेखक मण्डल के सभी सदस्यों के अमूल्य सहयोग के लिए भी में उनके प्रति अपना आभार व्यक्त करती हूँ। शिक्षाविद् परामर्शदाताओं के सतत सहयोग से इस पाठ्यपुस्तक को निखारने में हमें जो सहयोग मिला है, उसके लिए भी मैं उन्हें धन्यवाद देती हूँ। में अपने संस्थान के सभी विद्वान सहयोगियों को भी हृदय से धन्यवाद देती हूँ जिनके अहर्निश परिश्रम के बल पर ही यह पाठ्यपुस्तक अन्तिम स्वरूप को ग्रहण कर सकी है।

सुधार और संशोधन की कोई सीमा नहीं होती है। मैं शिक्षा जगत के सभी सुधीजनों से अपेक्षा करती हूँ कि वे अपने सकारात्मक सुझावों से हमें अवश्य अवगत करायेंगे जिससे पाठ्य पुस्तक के अगले संस्करण को और अधिक ऊर्जावान एवं सार्थक बनाया जा सके।

श्रीमती नीना श्रीवास्तव

निदेशक

राज्य विज्ञान शिक्षा संस्थान, उ.प्र., इलाहाबाद

(3)

विषय-सूची

इकाई का	। नाम पृष्ठ संख्या
इकाई-1	जैव विकास, पारिस्थितिकी तन्त्र व उसके घटक (जैविक व अजैविक घटक), जैविक घटकों में खाद्य-शृंखला, खाद्य जल, परिस्थितिकीय पिरामिड
इकाई-2	खनिज एवं धातु : अयस्क, धातु का निष्कर्षण, धातु तथा अधातु में अन्तर 36
इकाई-3	आवर्त्तसारणी की सामान्य जानकारी : विद्युत ऋणात्मकता 64
इकाई-4	स्थिर विद्युत आवेश, विद्युत धारा, चुम्बकत्व 82
इकाई-5	रक्त की संरचना, रक्त वर्ग रक्त बैंक, रक्त आधान एवं सावधानियाँ 115
इकाई-6	रक्त पीड़ित/रक्त से सम्बन्धित सामान्य रोगों की जानकारियाँ 135
इकाई-7	एड्स व हेपेटाइटिस-बी की सामान्य जानकारी, कारण, लक्षण व बचाव के उपायों से अवगत कराना, सुरक्षा एवं प्राथमिक उपचार 137

इकाई-1

जैव विकास, पारिस्थितिकी तन्त्र व उसके घटक (जैविक व अजैविक घटक), जैविक घटकों में खाद्य-शृंखला, खाद्य जल, परिस्थितिकीय पिरामिड

इस इकाई को पढ़ने के पश्चात् निम्नलिखित बातों की जानकारी होगी—

- जैव विकास
- पारिस्थितिकीय तन्त्र व उसके घटक।
- जैविक घटकों में खाद्य-शृंखला तथा खाद्य जाल (जैविक व अजैविक घटक)।
- पारिस्थितिकीय पिरामिड

जैव विकास (Organic Evolution)

जीवों में विविधता एवं समानता

(Diversity and Similarities in Organisms)

सरलम *अमीबा* से विशालकाय व्हेल तथा जटिलतम मानव सिहत जन्तुओं की लगभग 12.5 लाख जातियों तथा बैक्टीरिया से लेकर विशालकाय वृक्षों तक पादपों की लगभग 5 लाख से अधिक जातियों की खोज हो चुकी है।

इनके अध्ययन से पता चलता है कि जीवों में विविधता होने पर भी उनकी संरचना व संगठन में मूलभूत समानता पायी जाती है। साथ ही इनकी जैव प्रक्रियाओं में भी समानता तथा निश्चित क्रम (definite order) पाया जाता है।

I. संरचनात्मक समानतायें (Structural Similarities)

- सभी जीव परमाणुओं व अणुओं के संयोग से बने हैं।
- सभी जीव एक विशेष पदार्थ जीवद्रव्य या प्रोटोप्लाज्म के बने होते हैं।
- 3. सभी जीवों का शरीर प्रोटोप्लाज्म की बनी कोशिकाओं (cells) से बना होता है।
- 4. कोशिका जीवों की संरचनात्मक इकाई है।
- जटिल जीवों में कोशिकाओं के समूह मिलकर ऊतक, ऊतक तन्त्र तथा अंग व अंग तन्त्र बनाते हैं।
- 6. समानता के आधार पर जीवों के समूह मिलकर जातियाँ (species) बनाते हैं।

(5)

II. जैव प्रक्रियाओं में समानतायें (Similarities in Life Processes)

मूलभूत जैविक क्रियायें बैक्टीरिया से लेकर मनुष्य तक सभी जीवों में समान रूप से होती हैं जैसे कि :

- 1. ऊर्जा की प्राप्ति
- 2. शारीरिक क्रियाओं को पूर्ण करने हेत् ऊर्जा का उपयोग
- 3. अपने समान संतानों की उत्पत्ति।

इन मूलभूत जैविक क्रियाओं को पूरा करने के लिए सभी जीवों में तीन मुख्य क्रियायें समान रूप से होती है :

- 1. ऊर्जा का स्थानान्तरण (Energy Transformation)—यद्यपि माइक्रोव्स, पादप व जन्तुओं में कोई समानता नहीं दिखाई देती किन्तु सभी में जैव क्रियाओं के लिए आवश्यक ऊर्जा ग्लूकोस से प्राप्त की जाती है। ग्लूकोस के अपचय तथा ऊर्जा मुक्ति की सभी रासायनिक प्रक्रियायों, उनको उत्प्रेरित करने वाले एंजाइम तथा इनके अन्तिम उत्पाद सभी जीवों में समान हैं। ऊर्जा स्थान्तरण व रूपान्तरण की क्रियाओं में समानता से स्पष्ट हो जाता है कि सभी जीवों का उद्भव एक ही आदि पूर्वज से हुआ है।
- 2. आनुवंशिक संकेत (Genetic Signals)—सभी जीवों में आनुवंशिक सूचनायें DNA में नाइट्रोजिनस क्षारकों के क्रम के रूप में संचित रहती हैं। इन्हीं के माध्यम से जीवों के लक्षण उनकी संतित में प्रेषित होते हैं। युग्मकों के द्वारा मातृ एवम् पितृ जीवों से आनुवंशिक पदार्थ युग्मनज (zygote) में पहुँचता है। इसी एककोशिक युग्मनज से पूर्ण जीव का वर्धन होता है। भ्रूणीय वर्धन के समय युग्मनज के आनुवंशिक पदार्थ में संचित विभिन्न सूचनायें समय-समय पर क्रमबद्ध रूप में विशिष्ट प्रोटीन के संश्लेषण का नियमन करती है जिससे जीव के विशिष्ट लक्ष्मणों का विकास होता है।
- 3. प्रोटीन संश्लेषण की यांत्रिकी (Mechanism of Protein Synthesis)—बैक्टीरिया से लेकर मनुष्य तक सभी जन्तुओं व पादपों में प्रोटीन संश्लेषण की क्रिया एक समान है। सभी जीवों में :
 - 🔍 1. DNA प्रोटीन संश्लेषण के लिए कोशिका को आवश्यक संदेश प्रेषित करता है।
 - 2. mRNA इन सूचनाओं को केन्द्रक से कोशिकाद्रव्य में पहुँचाता है।
 - 3. *t*RNA ऐमीनो अम्लों को *m*RNA के आदेशानुसार एक निश्चित क्रम में जुड़ने के लिए राइबोसोम के *m*RNA तक लेकर आते हैं।
 - 4. ऐमीनो अम्लों के जुड़ने से पॉलिपेप्टाइड शृंखला का निर्माण होता है।
 - 5. इस क्रिया में भाग लेने वाले एंजाइम सभी जीवों में समान होते हैं।

वैज्ञानिकों का मत है कि आद्य जीव सरल संरचना वाले थे। इन सरल संरचना वाले जीवों में धीरे-धीरे परिवर्तन के परिणामस्वरूप जिटल से जिटल जीवों का विकास हुआ है और होता जा रहा है। जीवों में होने वाला यह परिवर्तन जैव विकास (organic evolution) कहलाता है।

जैव विकास की मौलिक परिकल्पना (Basic Idea of Organic Evolution)

"परिवर्तन के साथ अवतरण "(Descent with modification or change)" जैव विकास की मौलिक परिकल्पना है। सजीवों की समष्टि (population) अथवा उनके समूहों के गुणों में होने वाले क्रिमिक परिवर्तनों को जैविक विकास कहते हैं। वास्तव में जैव विकास एक समष्टि (आबादी) में परिवर्तनों के संकलन के फलस्वरूप बने आगामी जीवों की नयी समष्टियों के विकास की प्रक्रिया है। इसी को रूपान्तरण के साथ अवतरण भी कहते हैं।

कार्बिनिक विकास की संकल्पना के अनुसार वर्तमान के पेड़-पौधे व जन्तु, सभी समय के साथ सरल संरचना वाले आदिकालीन जीवों में प्राकृतिक व धीमी गति से लगातार होने वाले परिवर्तनों के फलस्वरूप विकसित हुए हैं।

जीवन की उत्पत्ति के ओपेरिनवाद (Oparin theory) के अनुसार प्रारम्भिक कोशिकारूपी सरल आदि जीवों से एक ओर तो जटिल एककोशिकीय जीवों का विकास हुआ तथा दूसरी ओर इनमें से कुछ ने समूहों में आकर प्रारम्भिक बहुकोशिकीय जीवों की उत्पत्ति की। इन्हीं प्रारम्भिक बहुकोशिकीय जीवों की कोशिकाओं के बीच धीरे-धीरे श्रम विभाजन का विकास हुआ और ये अलग-अलग कार्य करने लगीं। इस श्रम विभाजन के फलस्वरूप इनमें कोशिकीय विभेदीकरण (cell differentiation) हुआ। इस प्रकार धीरे-धीरे शरीर के और अधिक सुचारू संगठन के कारण नई उन्नत श्रेणियों की जीव-जातियों का विकास हुआ। इस प्रकार प्रारम्भिक निम्न कोटि के सरल जीवों से समय के साथ क्रमिक परिवर्तनों द्वारा अधिक विकसित एवं जटिल जीवों की उत्पत्ति को ही जैव विकास कहते हैं।

जैव विकास परिकल्पना की विशेषतायें

(Special Features of Evolutionary Thought)

- 1. आजकल पाये जाने वाले जीव इसी स्वरूप में नहीं बने, अपितु करोड़ों वर्ष पूर्व इनके पूर्वज सरल संरचना वाले थे। कालांतर में उनकी सरल संरचना में परिवर्तन होते गये और धीरे-धीरे अधिक-से-अधिक जटिल संरचना का विकास होता गया।
 - 2. प्रकृति की वातावरणीय दशायें सदैव बदलती रहती हैं।
 - 3. जीवों में प्रकृति की बदलती हुई दशाओं के अनुकूल परिवर्तन होते रहते हैं। इन्हीं परिवर्तनों के फलस्वरूप नये जीव बनते हैं।

- 4. जीवों में आदिकाल से ही परिवर्तन होते रहे हैं, आज भी हो रहे हैं और भविष्य में भी होते रहेंगे। अतः जैव विकास सतत रूप से होने वाली प्रक्रिया है।
- 5. नये जीवों तथा नयी जातियों की उत्पत्ति जटिल एवं धीमी क्रिया है जो हजारों वर्षों में पूर्ण होती है। अतः इस प्रकार के जीवों से दूसरे प्रकार के जीवों को बनते देखना सम्भव नहीं, किन्तु अन्तरक्रमण जीवों (intergrading organisation) का पाया जाना इसका समर्थन करता है।
- 6. किन्हीं दो वर्तमान जीवित जातियों की उत्पत्ति कालांतर में किसी न किसी समय समान पूर्वज से अवश्य हुई होगी। इसे एकवंशीय इतिहास (monophyletic geneology) कहते हैं।

जैव विकास के समर्थन में प्रमाण (Evidences in Support of Evolution)

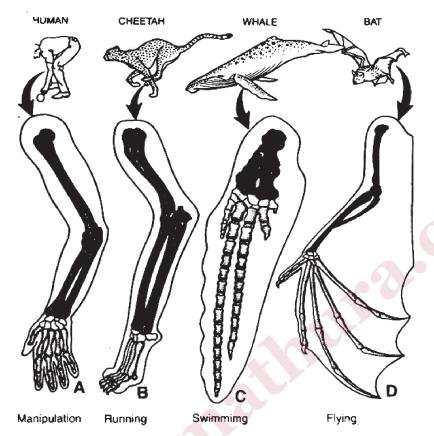
यदि जैव विकास (Organic Evolution) हुआ है तो प्रारम्भ से लेकर आज तक की जीव-जातियों की शरीर-रचना, कार्यिक एवं रासायनी भ्रूणीय विकास, वितरण, आचरण (behaviour) आदि में कुछ-न-कुछ सम्बन्ध एवं क्रम (relationship and gradation) होना आवश्यक है। लैमार्क, डारविन, वैलैस, डी व्रीज आदि ने जैव विकास के बारे में अपनी-अपनी परिकल्पनाओं को सिद्ध करने के लिए इन्हीं सम्बन्धों एवं क्रमों को दिखाने वाले प्रमाण प्रस्तुत किए जिन्हें हम निम्नलिखित श्रेणियों में बाँट सकते हैं—

- 1. वर्गीकरण से प्रमाण
- 2. तुलनात्मक संरचना से प्रमाण
- 3. संयोजक जन्तुओं से प्रमाण
- 4. पूर्वजता से प्रमाण
- 5. तुलनात्मक भ्रौणिकी से प्रमाण
- 6. भौगोलिक वितरण से प्रमाण
- 7. तुलनात्मक कार्यिकी एवं जैव-रासायनी से प्रमाण
- 8. आनुवंशिकी से प्रमाण
- 9. पशु-पालन से प्रमाण
- 10. रक्षात्मक समरूपता से प्रमाण
- 11. जीवाश्म विज्ञान एवं जीवाश्मों से प्रमाण

उपर्युक्त प्रमाणों में से कुछ का यहाँ वर्णन कर स्पष्ट किया जा रहा है।

1. जीवों की तुलनात्मक संरचना से प्रमाण

(Evidences from Comparative Morphology)


समजातता तथा समजात अंग (Homology and Homologous Organs)

कुछ अंग मूल रचना एवं उद्भव में समान होते हैं किन्तु अलग-अलग कार्य के लिए अनुकूलित होने के कारण असमान दिखाई देते हैं। इनका भ्रूणीय विकास भ्रूण के समान भागों से होता है। ऐसे अंगों को समजात अंग (homologous organs) तथा इनकी समानता को समजातता (homology) कहते हैं। संरचनात्मक समजातता की परिकल्पना बूर्फों (Buffon, 1750) ने प्रस्तुत की थी। सर रिचार्ड ओवन (Richard Owen) ने 1843 में समजातता की परिभाषा दी थी।

उदाहरण (Example) 1. कशेरुकी जन्तुओं में अग्रपाद (Forelimbs in Vertebrates)—कशेरुकी जन्तुओं में गमन के लिए दो जोड़ी पार्श्व युगल उपांग (paired appendages) होते हैं : वक्ष के अगले भाग में अंस उपांग (pectoral appendages) तथा पिछले भाग में अगेणि उपांग (pelvic appendages)। मछलियों (class pisces) में ये उपांग चप्पू के आकार के होते हैं और तैरने में सहायता करते हैं इन्हें पखने (fins) कहते हैं। शेष सभी कशेरुकी प्राणियों (Class Amphibia, Reptilia, Aves and Mammals) में ये युगल उपांग भूमि पर चलने के लिए पंचांगुली पावें (pentadactyl limbs) के रूप में होते हैं। इनको अग्रपाद व पश्चपाद कहते हैं। इसी कारण सभी कशेरुकी वर्ग चतुष्पादकीय (tetrapods) कहलाते हैं। सभी चतुष्पादकीय कशेरुकी जन्तुओं के अग्रपाद व पश्चपादों की मूल रचना एक-जैसी होती है तथा इनका उद्भव व भ्रूणीय व भ्रूणीय परिवर्धन भी समान भागों से होता है। किन्तु विभिन्न आवासों में रहने के कारण इनका आकार अलग-अलग दिखाई देता है जैसे समुद्री स्तिनयों (व्हेल एवं सील) में अग्रपाद मछिलयों के पखनों के समान या चप्पू के आकार के होते हैं। इन्हें फ्लिपर (flippers) कहते हैं। पिक्षयों तथा उड़ने वाले स्तिनयों में अग्रपाद उड़ने के लिए पंखों (wings) के रूप में होते हैं। चीते व घोड़ आदि की अगली टाँगे दौड़ने के लिए लम्बी होती हैं। मनुष्य के हाथ वस्तुओं को पकड़ने के अनुकूल होते हैं। इसके लिए अंगुलियाँ लम्बी तथा अंगूठा अंगुलियों से समकोण बनाता है। छछुन्दर में अग्रपाद मिट्टी खोदने के अनुरूप होते हैं।

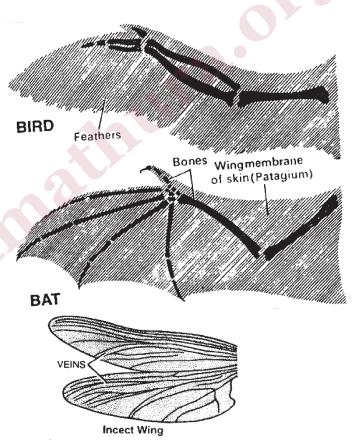
इन सभी चतुष्पादी कशेरुकी जन्तुओं के अग्रपादों की भीतरी संरचना का अध्ययन करने पर पता चलता है कि :

- 1. इनके अन्तःकंकाल (endoskeleton) में समान अस्थियाँ ह्यूमरस, रेडियस-अल्ना, कार्पल्स, मेटाकार्पल्स तथा अंगुलास्थियाँ पायी जाती हैं।
- 2. इनमें पायी जाने वाले पेशियाँ भी समान-सी होती हैं।
- 3. इनमें रुधिर व तंत्रिका सप्लाई भी समान होती है।

चित्र 1. विभिन्न कशेरुकियों के अग्रपादों के कंकाल में समजातता का प्रदर्शन।

इस मौलिक समानता का कारण एक ही है कि सारे चतुष्पादी कशेरुकियों में अग्रपादों का भ्रूणीय विकास समान विधि से तथा भ्रूण के समान भागों से होता है। यह समजातता इनके एक ही आदि-पूर्वज से विकास को भी प्रदर्शित करती है।

उदाहरण 2. कीटों के मुख-उपांगों में समजातता (Homology in the Mouth-parts in Insects)—विभिन्न प्रकार के कीटों में मुख-उपांग अलग-अलग प्रकार के भोजन को ग्रहण करने के लिए रूपान्तरित होते हैं। एक लेब्रम (labrum), दो जोड़ी मैक्सिली (maxillae) तथा एक हाइपोफैरेंक्स (hypopharynx) कीटों के प्रारूपी मुख उपांग हैं। कॉकरोच में मुख-उपांग काटने और चबाने वाले (piercing and sucking) मच्छरों में रुधिर या फलों का रस चूसने के लिए भेदने व चूसने वाले (siphoning type) तथा तितिलियों में फूलों का रस चूसने के लिए साइफन के रूप में (siphoning type) होते हैं। ये सभी प्रकार के मुखांग एक-दूसरे से बिल्कुल अलग दिखाई देते हैं किन्तु सभी की मूलभूत संरचना एक समान होती है।

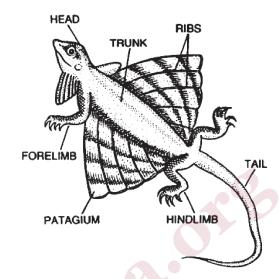

उदाहरण 3. पादपों में समजातता (Homology in Plants)—वनस्पति जगत में भी समजातता को देखा जा सकता है। पादपों में सामान्य पत्तियाँ काँटों (spines thorns) व प्रतानों (tendrils) में

रूपान्तरित होती हैं। जड़ों का मुख्य कार्य पौधों को जमीन में स्थिरता प्रदान करना और भूमि से जल व लवण का अवशोषण करना है किन्तु कुछ पौधों की जड़ें भोजन संचय के लिए तथा कुछ वायुमंडल से ऑक्सीजन ग्रहण करने के लिए अलग-अलग आकार-प्रकार की होती है किन्तु उनका उद्भव भ्रूण के समान भाग से होता है।

2. समरूपता तथा समरूपी अंग (Analogy and Analogous Organs)

जो अंग समान कार्य करने के कारण समान दिखाई देते हैं लेकिन मूल रचना और भ्रूणीय परिवर्तन में भिन्नता प्रदर्शित करते हैं, उन्हें समरूपी या समवृत्ति अंग तथा इस समानता को समरूपता या समवृत्तिता कहते हैं।

उदाहरण 1. कीटों (ड्रैगन फ्लाई), टेरोडेक्टाइल (Pterodactyle), (चील) तथा चमगादड़ में पंख उड़ने का कार्य करते हैं और एक जैसे दिखाई देते हैं, किन्तू इनकी मूलभूत रचना में बह्त अन्तर है। कीटों में पंख काइटिन के एक महीन पल्ले के रूप में होते हैं और आधार से लगी पेशियों की सहायता से गति करते हैं। उड़ने वाले कशेरुकियों के पंख अगली टाँगों के रूपांतरण से विकसित हुए हैं। टेरोडेक्टाइल में पंख धड़ व पिछली टाँगों के बीच फैली हुई त्वचा से बनते हैं। पक्षियों में अगली टाँगों और उन पर लगे पिच्छों से पंख बनते हैं जबिक चमगादड़ के पंख अग्रपादों की चार लम्बी अंग्लियों तथा थड़ के बीच फैली हुई त्वचा से बनते हैं। अतः इन जन्तुओं में पंखों का विकास अलग-अलग प्रकार से तथा अलग-अलग पूर्वजों से हुआ है।


समरूपी अंग : पक्षी और चमगादड़ के पंखों में पंख विस्तार की तथा इन पंखों की कीट के पंख से समरूपता।

उदाहरण 2. मछिलयों के पखने (fins) सील के फिलपर एवं व्हेल मछिलयों (स्तनी) के चप्पू (paddles) तैरने के लिए उपयोगित होने के कारण समान दिखायी देते हैं, लेकिन मूल रचना में बहुत भिन्न होते हैं। व्हेल व सील में ये पंचागुंली (pentadactyl) पादों के रूपान्तरण हैं, और मछिलयों के पखने फिन-रेज (fin rays) के बने होते हैं।

(11)

उदाहरण 3. उड़ने वाली छिपकली, ड्रेको (Draco), में पंख चमगादड़ के पंखों के समान त्वचा के प्रसार से बनते हैं और पैटेजियम (patagium) कहलाते हैं किन्तु चमगादड़ में पैटेजियम अग्रपादों की अस्थियों से अवलम्बित होते हैं और ड्रेको में पसलियाँ पार्श्व में बढ़कर पैटेजियम को अवलम्बन प्रदान करती हैं।

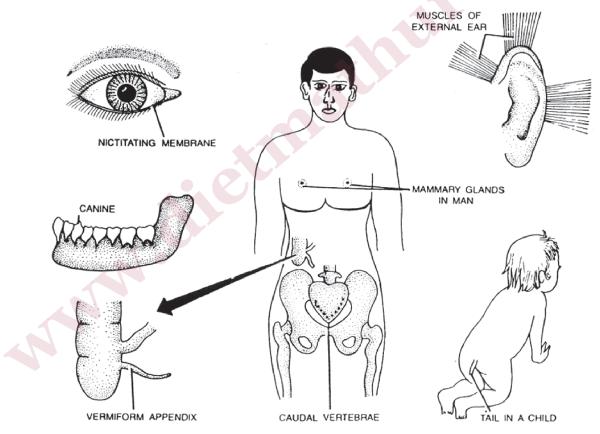
उदाहरण 4. मधुमक्खी तथा बिच्छू में डंक समान कार्य करते हैं और समान से ही दिखाई देते हैं परन्तु ये समरूप होते हैं। मधुमक्खी का डंकक्षेपक (ovipositor) का रूपान्तर होता है और बिच्छू में यह अंतिम उदर खंड के रूपान्तरण से बनता है।

चित्र ड्रैको (Draco) नामक उड़न छिपकली के पंख

तालिका : समजातता तथा समरूपता में अन्तर (Differences between Homology and Analogy)

समजातता (Homology)	समरूपता (Analogy)	
 समान उद्भव व समान मूल संरचना के आधार पर विभिन्न जीवों के अंगों में पायी जाने वाली समानता 	1. समान कार्य करने पर विभिन्न जीवों के अंगों प जाने वाली बाह्य आकारिक समानता को समरूप	
को समजातता कहते हैं।	कहते हैं।	
 समान मूलभूत संरचना वाले अंगों को समजात अंग कहते हैं। 	2. समान दिखने वाले अंगों को समरूपी अंग कहते	हैं।

2. अवशेषी अंगों से प्रमाण (Evidences from Vestigial Organs)

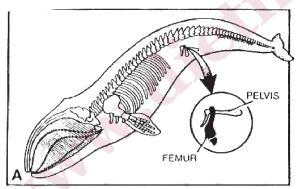

जीवों में अनेक ऐसी रचनाएँ भी पायी जाती हैं जो शरीर के लिए अनावश्यक हैं। ये अंग अवशेषी अंग कहलाते हैं। इनकी उपस्थित से प्रमाणित होता है कि ये अंग कभी-न-कभी इन जन्तुओं के पूर्वजों में क्रियाशील थे और उनके लिए उपयोगी थे। बदलते पर्यावरण में इनका उपयोग धीरे-धीरे कम होता गया और ये आकार में छोटे व निष्क्रिय होते गये। इस प्रकार अवशेषी अंग इन जीवों का सम्बन्ध उन पूर्वजों से स्थापित करते हैं जिनमें ये अंग सिक्रय और पूर्ण विकसित थे। अवशेषी अंग लगभग सभी जीवों में पाये जाते हैं:

(A) मनुष्य में अवशेषी अंग (Vestigial Organs in Man)

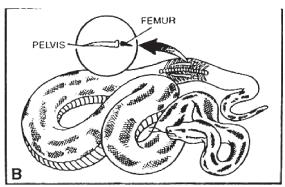
मनुष्य में ही 100 से अधिक अवशेषी अंग पाये जाते हैं जिनमें से कुछ निम्नलिखित हैं :

(12)

- 1. कृमिरूप परिशेषिका (Vermiform Appendix)—खरगोश, गाय, भैंस, बन्दर आदि शाकाहारी स्तनधारियों में सेलुलोस के पाचन के लिये सीकम (caecum) होता है। किन्तु मनुष्य में यह कृमिरूप परिशेषिका के रूप में एक अवशेषी अंग द्वारा प्रदर्शित होता है कि मनुष्य के पूर्वज शाकाहारी थे। सर्वभक्षी स्वभाव के कारण मनुष्य के भोजन में सेलुलोस की मात्रा कम होने से सीकम का कोई महत्त्व नहीं रहा और वह धीरे-धीरे निष्क्रिय होता गया।
- 2. निमेषक पटल (Nictitating Membrane)—मेंढक, पक्षियों, बिल्ली आदि के नेत्रों में मिलने वाली nictitating membrane का मनुष्य में कोई महत्व नहीं है। यह नेत्र के भीतरी किनारे पर लाल रंग की एक अर्थ-चन्द्राकार झिल्ली के रूप में होता है जिसे प्लिका सेमीलुनेरिस (plica semilunaris) कहते हैं।
- 3. पूँछ (Tail)—मनुष्य में पूँछ नहीं होती, फिर भी चार पुच्छ कशेरुक त्वचा के नीचे दुम-सदृश रचना प्रदर्शित करते हैं। कभी-कभी नवजात शिशु में भी छोटी-सी पूँछ दिखाई देती हैं।

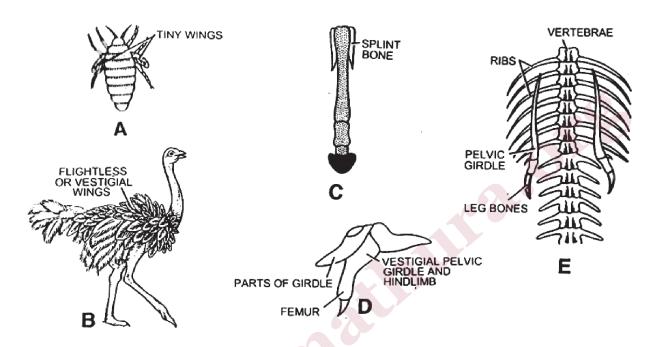


चित्र मनुष्य के अवशेषी अंग


4. कर्ण पल्लव की पेशियाँ (Muscles of Ear Pinna)—स्तनधारी जन्तुओं में कर्ण पल्लव को हिलाने-डुलाने के लिए कर्ण पेशियाँ होती हैं, किन्तु मनुष्य अपने कान हिलाने में असमर्थ है। फिर

भी मनुष्य के कानों में ये पेशियाँ अवशेषी संरचना के रूप में पायी जाती हैं। स्पष्ट है कि मनुष्य के पूर्वजों में ये पेशियाँ मौजूद थीं और इनका कोई न कोई महत्व भी अवश्य ही रहा होगा।

- 5. अक्ल दाढ़ (Wisdom Tooth)—मनुष्य में तीसरा मोलर (third molar) क्रियाशील नहीं होता किन्तु अन्य प्राइमेट्स में यह क्रियाशील होता है। यह 17 वर्ष की आयु के बाद निकलता है, कुछ में निकलता ही नहीं और कुछ में एक या दो दाढ़ें निकलकर रह जाती हैं।
- 6. त्वचा पर बाल (Body Hair)—स्तिनयों की त्वचा पर बाल पाये जाते हैं। ये शरीर के तापक्रम को स्थिर रखते हैं। मनुष्य में इनकी आवश्यकता नहीं रही है। इसी कारण मनुष्य की त्वचा में बाल केवल अवशेषी अंगों के रूप में रह गये हैं।
 - (B) अन्य जन्तुओं में अवशेषी अंग (Vestigial Organs in other Animals)
- 1. व्हेल एवं अजगर में पश्चपाद (Hindlimbs in Whale and Python)—सर्पों में अग्र व पश्चपाद व उनकी मेखलायें (girdles) नहीं होतीं, किन्तु अजगर तथा *बोआ (Boa)* में इनके अवशेष पाये जाते हैं। इससे अनुमान लगाया गया है कि पादहीन सर्पों का विकास पाद वाले आद्य सरीमृपों (reptiles) से हुआ है। इसी प्रकार व्हेल में भी पश्चपादों तथा श्रोणि मेखला के अवशेष होते हैं।
- 2. व्हेल के कर्ण पल्लव (Pinna in Whales)—जलीय स्तनधारियों जैसे सील व व्हेल आदि में कर्ण पल्लव धीरे-धीरे क्रियाहीन होकर अवशेष के रूप में रह गये क्योंकि बाह्य कर्ण हवा से ध्वनि तरंगे ग्रहण करते हैं किन्तु जल में उनका कोई उपयोग नहीं है।



Vestigial pelvis and femur of a python

चित्र : A व्हेल में अवशेषी श्रोणि मेखला व फीमर

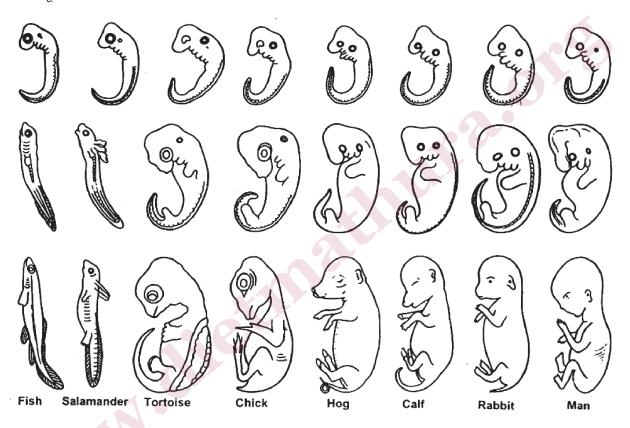
- B. पाइथन में अवशेषी श्रोणी मेखला व फीमर।
- 3. घोड़े के पादों की स्प्लिंट अस्थियाँ (Splint bones in horse limbs)—घोड़े के पूर्वजों के अग्रपादों में चार तथा पश्चपादों में तीन-तीन अंगुलियाँ थीं। सभी अंगुलियों पर नखर थे और सभी अंगुलियाँ जमीन पर पहुँचती थीं व चलने में भाग लेती थीं। तेजी से दौड़ने के लिए पादों में केवल तीसरी अंगुली सबसे अधिक विकसित हुई और उस पर खुर भी बना। अन्य अंगुलियाँ ह्रसित होती गयी

और केवल तीसरी अंगुली ही शेष बची। ह्रसित अंगुलियों की अस्थियों के अवशेष अभी भी मिलते हैं।

चित्र जन्तुओं के अवशेषी अंग A. खटमल में अवशेषी पंख, B. ऑस्ट्रिच में अवशेषी पंख, C. घोड़े के पाद में स्प्लिंट अस्थि, D. व्हेल की अवशेषी अंसमेखला तथा E. पाइथन में अवशेषी अंसमेखला।

4. अवशेषी पंख (Vestigial Wings)—पक्षियों में पंख उड़ने के लिए होते हैं। कुछ पक्षियों में शरीर भारी व बड़ा हो गया। जब उड़ने के बजाए इन्होंने तेज दौड़ने की आदत डाली। न उड़ने के फलस्वरूप धीरे-धीरे इनके पंख अवशेषी हो गये। अफ्रीका में मिलने वाला शतुरमुर्ग (Ostrich, the largest living bird), ऑस्ट्रिया के एमू एवं कैसोवरी (Emu and Cassowary), न्यूजीलैण्ड का कीवी (Kiwi) आदि इसी प्रकार के पक्षी हैं। ये पक्षी केवल दौड़ते हैं।

(C) पादपों में अवशेषी अंग (Vestigial Organs in Plants)


पौधों ने भी अवशेषी अंग पाये जाते हैं, जैसे—

- 1. कैक्टस पौधों में काँटों में रूपान्तरित पत्तियाँ,
- 2. कुछ कैक्टस पौधों में क्यूटिन की परत के नीचे स्थित निष्क्रिय स्टोमेटा,
- 3. खुबानी में पर्णवृत्त पर पत्रकों की उपस्थिति।

(15)

3. तुलनात्मक भ्रौणिकी से प्रमाण (Evidences from Comparative Embryology)

परिवर्धन में समानता (Similarity in Development)—सभी बहुकोशिकीय जन्तुओं के भ्रूणीय परिवर्तन में समानता होती है। ये अपना जीवन एककोशिक युग्मनज (zygote) से शुरू करते हैं। इससे क्रमशः मोरूला, ब्लैस्टूला व गैस्टूला अवस्थाओं का विकास होता है। अलग-अलग समूहों के जन्तुओं में गैस्टूला के बाद की अवस्थाओं में भिन्नता बढ़ती जाती है।

चित्र : विभिन्न कशेरुकी प्राणियों की भ्रूण अवस्थाओं की तुलना

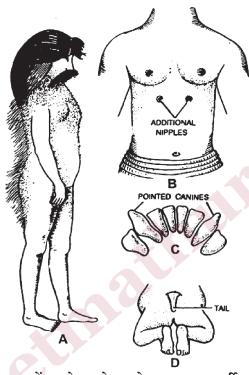
जाइगोट एककोशिक प्रोटोजोअन जैसे पूर्वज तथा ब्लैस्टूला एवम् गैस्टूला बहुकोशिक निडेरिया जैसे पूर्वज को प्रदर्शित करता है।

2. भूणों में समानता (Similarity in the Embryos)—चित्र में मछली, सेलामेंडर, कछुए, पक्षी, हॉग, बछड़े, शशक एवं मनुष्य के भ्रूण को वर्धन की विभिन्न अवस्थाओं में दिखाया गया है। प्रारम्भिक अवस्था में इन सभी के भ्रूण एक-जैसे दिखाई देते हैं। इन सभी के भ्रूणों में क्लोम व क्लोम दरारें (gill clefts) और नोटोकॉर्ड (notochord), आदि पाये जाते हैं। मेंढक या सेलामेंडर के भ्रूण में क्लोम व क्लोम दरारों का पाया जाना तो माना जा सकता है क्योंकि इनका टैडपोल लाखा मछली

के समान जलीय होता है। कछुए, पक्षी व मनुष्य कभी भी जलीय नहीं रहे। इनके भ्रूणों में अवशेषी क्लोम व क्लोम दरारों का पाया जाना यह प्रमाणित करता है कि सभी कशेरुकी जन्तुओं का विकास मछली के समान पूर्वजों से हुआ है। भ्रूणीय अध्ययन से यह भी पता चलता है कि भ्रूणों में पहले संघीय और बाद में वर्णीय लक्षणों का विकास होता है।

- 3. पुनरावृत्ति सिद्धान्त तथा बायोजेनेटिक नियम (Recapitulation Theory and Biogenetic Law)—मनुष्य के भ्रूण में पहले मछिलयों के समान क्लोम दरारें व द्विवेश्मी हृदय होता है। इसके बाद क्लोम दरारें बंद हो जाती हैं तथा सरीसृपों के भ्रूण की भाँति त्रिवेष्मी हृदय तथा पेशीय पूँछ बनते हैं। अंत में स्तिनयों के समान लक्षण विकिसत होते हैं। इससे स्पष्ट है कि प्रत्येक जीव अपने भ्रूणीय परिवर्धन में उन सभी अवस्थाओं से गुजरता है जिन अवस्थाओं से कभी उसके पूर्वज विकिसत होकर बने होंगे। इसी आधार पर वॉन बेयर (Von Baer) ने 1827 में बायोजेनेटिक नियम (Biogenetic Law) प्रतिपादित किया। इसके अनुसार :
 - 1. भ्रूण में पहले सामान्य लक्षण और बाद में विशिष्ट लक्षण बनते हैं।
 - 2. सामान्य लक्षणों में भी पहले अधिक सामान्य और उसके बाद कम सामान्य लक्षणों का विकास होता है। इसी प्रकार पहले कम विशिष्ट और सबसे बाद में जाति-विशिष्ट लक्षण विकसित होते हैं।
 - 3. किसी एक जाति के भ्रूणों में दूसरी जाति के भ्रूणों से अलग होने की प्रवृत्ति पायी जाती है।
 - भ्रूणीय अवस्थायें आदि पूर्वजों के व्यस्क के समान न होकर उनकी भ्रूणीय या युवा प्रावस्थाओं के समान होती हैं।

अतः बेयर के बायोजेनेटिक नियम के अनुसार जन्तु अपनी भ्रूणावस्था में पूर्वजों की भ्रूणावस्था को दोहराते हैं। सन् 1866 में अरनेस्ट हेकल (Ernst Haeckel) ने पुनरावृत्ति सिद्धान्त (Recapitulation theory) प्रस्तुत किया। इसके अनुसार 'प्रत्येक जीव का व्यक्तित्व उसके जातिवृत की पुनरावृत्ति करता है' (Ontogeny recapitulates phylogeny)।


युग्मनज से व्यस्क जन्तु बनने तक के परिवर्धन को व्यक्तिवृत (ontogeny) तथा किसी जन्तु जाति के विकासीय इतिहास को जातिवृत (phylogeny) कहते हैं। हेकल के पुनरावृत्ति सिद्धान्त के अनुसार जन्तु व्यक्तिवृत में पूर्वजों के व्यस्क लक्षणों को दोहराते हैं जबिक बेयर के अनुसार जन्तु व्यक्तिवृत में पूर्वजों के भ्रूणीय लक्षणों को दोहराते हैं।

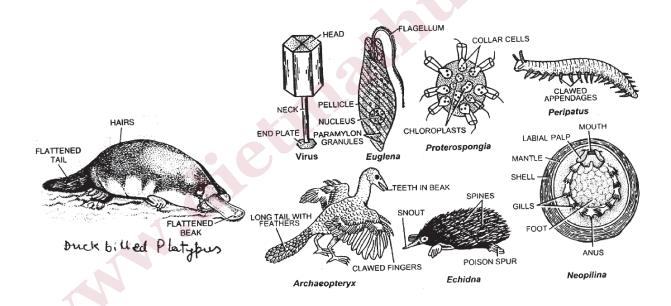
4. पूर्वजता या प्रत्यावर्तन से प्रमाण (Evidences From Atavism or Reversion)

जीवों या जीव समूहों में कुछ ऐसे लक्षण अचानक विकसित हो जाते हैं जो बहुत समय पहले उनके पूर्वजों में पाये जाते थे। इसको पूर्वजता या प्रत्यावर्तन कहते हैं।

प्रत्यावर्तन के उदाहरण (Examples of Reversion)

 कुछ मानव शिशुओं में गर्दन पर कान के पीछे एक छिद्र होता है। इसे सरवाइकल फिस्टुला (cervical fistula) कहते हैं। यह मनुष्य के आदि पूर्वजों में पाये जाने वाली क्लोम दरारों (gill-slits) का अवशेष है।

चित्र : मनुष्य में पाये जाने वाले कुछ प्रत्यावर्ती लक्षण


A. कापियों के समान घने बाल, B. अतिरिक्त चूचुक, C. कैनाइन दाँत, D. मानव शिशु में पूँछ

- 2. कुछ नवजात मानव शिशुओं में चूचुकों की संख्या दो से अधिक होती है। ये वक्ष व उदर दोनों प्रदेशों में पाये जाते हैं। मनुष्य के पूर्वजों व आद्य स्तनधारियों में वक्ष व उदर दोनों भागों में कई जोड़ी चूचुक होते हैं। अतः कुछ शिशुओं में चूचुकों की अधिक संख्या पूर्वजता का उदाहरण है।
- 3. कैनाइन दाँत (cannies) शिकारी स्तनधारियों में विकसित होते हैं। मनुष्य के आदि पूर्वज भी मांसाहारी थे और उनमें कैनाइन पूर्ण विकसित थे। आधुनिक मानव सर्वभक्षी हैं और पका हुआ खाना खाते हैं। इनमें कैनाइन विकसित नहीं हैं। कभी-कभी मानव शिशु में बड़े और नुकीले कैनाइन का बनना माँसाहारी पूर्वजों का प्रतीक है।
- 4. कुछ मनुष्यों के शरीर पर किपयों के समान लम्बे व घने बाल मानव और किप में निकट सम्बन्ध को प्रदर्शित करते हैं।
- 5. कुछ मानव शिशुओं में छोटी-सी पूँछ का पाया जाना भी पूर्वजता का उदाहरण है।

5. संयोजी कड़ियों से प्रमाण (Evidences from Connecting Links)

वर्गीकरण में कुछ जीव ऐसे भी मिलते हैं जिनमें कुछ लक्षण एक वर्ग के तथा कुछ लक्षण दूसरे वर्ग के होते हैं। अतः ये जीव या जीव-जातियाँ इन दोनों वर्गों के बीच एक सेतु का कार्य करते हैं। इन जीवों को संयोजी कड़ियाँ कहते हैं।

- 1. विषाणु (Virus) : विषाणु को सजीव व निर्जीव के बीच की कड़ी माना जाता है।
- 2. यूग्लीना (Euglena) : यूग्लीना प्रोटोजोआ संघ (Phylum Protozoa) का प्राणी है। इसमें पादप व जन्तु दोनों प्रकार के लक्षण पाये जाते हैं। पादप के समान यूग्लीना में क्लोरोप्लास्ट व क्लोरोफिल पाया जाता है। इनमें पादपसम पोषण होता है। ये प्रकाश-संश्लेषण द्वारा अपना भोजन स्वयं बनाते हैं। जन्तुओं के समान इनके शरीर पर पेलिकल का आवरण होता है तथा जनन जन्तु-सदृश होता है। इसीलिए यूग्लीना को जन्तु व पादपों के बीच की कड़ी मानते हैं।

चित्र : जन्तु समूहों के बीच संयोजी कड़ियों के कुछ उदाहरण—(1) वाइरस— सजीव व निर्जीव के बीच कड़ी; (2) यूग्लीना—पादप व जन्तु जगत के बीच कड़ी (3) प्रोटीरोस्पेंजिया—एककोशिक व बहुकोशिक जीवों के बीच कड़ी (4) पेरिपेटस— ऐनिलिडा व आर्थोपोडा समुदाय के बीच कड़ी; (5) निओपेलिना—ऐनिलिडा व मौलस्का संघ के बीच कड़ी; (6) आर्कियोप्टेरिक्स—सिरसृप व पिक्षयों के बीच की कड़ी एकिडना तथा प्लैटियस सरीसृप तथा स्तनी के संयोजक।

(19)

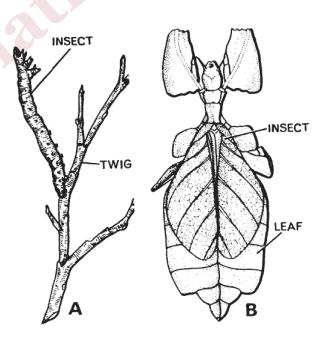
- 3. प्रोटीरोस्पन्जिया (Proterospongia)—यह प्रोटोजोआ संघ का निवही जन्तु (colonial animal) है। यह स्पंज की कीप कोशिकाओं (choanocytes or collared cells) के समान कोशिकाओं का बना होता है। यह प्रोटोजोआ व पोरीफेरा संघ के बीच की कड़ी को प्रदर्शित करता है।
- 4. पेरिपेटस (Peripatus)—पेरिपेटस में कुछ लक्षण ऐनिलिडा संघ के तथा कुछ लक्षण आर्थोपोडा संघ के समान होते हैं। इसके ऐनिलिडा संघ के लक्षण हैं (1) नेफ्रिडिया का पाया जाना, (2) Pseudosegmented कृमिवत, शरीर (3) सरल नेत्र तथा (4) क्यूटिकल युक्त त्वचा। पेरिपेटस में पाये जाने वाले आर्थोपोडा संघ के लक्षण हैं (1) नखरयुक्त टाँगे, (2) श्वसन के लिए ट्रेकिया, (3) ऐन्टीनी (antennae) का पाया जाना। इसीलिए पेरिपेटस (फाइलम ओनाइकोफोरा) को ऐनिलिडा व आर्थोपोडा संघ के बीच का सेतु माना जाता है। इसकी उपस्थित से पता चलता है कि आर्थोपोडा संघ का विकास ऐनिलिडा संघ के पूर्वजों से हुआ है।
- 5. निओपिलाइना (Neopillina)—यह फाइलम मौलस्का का जीव है। सन् 1952 में इसके प्रथम 10 जीवित स्पेसिमेन Coasta Rica के Pacific Coast से 3,500 मीटर की गहराई से पकड़े गये थे। इसमें ऐनिलिडा व मौलस्का दोनों संघों के लक्षण पाये जाते हैं :
 - (A) निओपिलाइना के ऐनिलिड लक्षण : ये निम्न प्रकार से हैं :
 - 1. मेटामेरिक संरचनात्मक आयोजन (metameric structural plan) का आभास होता है।
 - 2. 5-6 जोड़ी क्लोम (ctenidia), 6 जोड़ी नेफ्रिडिया, 8 जोड़ी रीट्रेक्टर पेशियाँ (retractor muscles) तथा दो जोड़ी ऑरिकिल (auricles) का पाया जाना मेटोमेरिक संरचना को प्रदर्शित करते हैं।
 - 3. पोलीकीट ऐनिलिड के समान इनके अंडों में स्पाइरल विदलन (spiral cleavage) होता है।
 - 4. ऐनिलिडा के समान Neopilina में भी ट्रोकोफोर लारवा के समान लारवा होता है।
 - (B) निओपिलाइना के मौलस्क लक्षण : ये इस प्रकार हैं :
 - 1. मौलस्का के समान कवच (shell) तथा मेंटल (mantle) होता है।
 - 2. अधर तल पर चपटा व माँसल पाद होता है जो काइटन (Chiton) के पाद के समान हैं।
 - 3. शरीर कोमल व चपटा होता है।
- 6. बैलेनोग्लॉसस (Balanoglossus): हेमीकॉर्डेटा उपसंघ का प्राणी, बैलेनोग्लॉसस, अकशेरुकी व कशेरुकी समूहों के बीच की स्थिति को प्रदर्शित करता है। इसका कृमिवत शरीर, अधर व टोस नर्व कार्ड तथा पृष्ठ हृदय अकशेरुकी लक्षण हैं। अल्पविकिसत नोटोकॉर्ड या स्टोमोकॉर्ड तथा सीलोम, आदि कॉर्डेट लक्षण हैं।

- 7. आर्कियोप्टेरिक्स (Archaeopteryx) : इस विलुप्त पक्षी को रेप्टाइल्स व पिक्षयों के बीच की संयोजी कड़ी माना जाता है। रेप्टाइल की भाँति इसके जबड़ों में दाँत थे, अग्रपादों में नखर थे तथा एक लम्बी-सी पूँछ थी। इसमें पिक्षयों की भाँति शरीर पर पिच्छों का बाह्यकंकाल तथा पंख थे। इससे स्पष्ट है कि पिक्षयों का विकास रेप्टाइल्स या उन्हीं के तुल्य पूर्वजों से हुआ है।
- 8. एकिडना (Echidna) : स्तनी वर्ग (Class Mammalia के प्रोटोथीरिया उपवर्ग के एकिडना (Echidna) में रेप्टीलिया की भाँति क्लोएका होता है और यह खोलयुक्त अंडे देता है। इसका भ्रूणीय विकास भी रेप्टाइल्स के समान होता है। स्तनधारियों के समान इसके शरीर पर बाल होते हैं और यह अपने बच्चों को दूध पिलाता है। अतः एकिडना में स्तनधारियों व रेप्टाइल्स, दोनों के लक्षण विद्यमान हैं।

इसी प्रकार *आर्निथोरिंकस (Ornithorhynchus)* या **डकबिल प्लेटिपस (duck-bill** *Platypus*) भी इसी उपवर्ग का प्राणी है। अतः प्रोटोथीरिया उपवर्ग रेप्टाइल्स व स्तनधारियों के बीच की संयोजी कड़ी है।

6. आनुवंशिकी (Genetics) से प्रमाण

आप जानते हैं कि प्रत्येक जीवधारी के सारे लक्षण इसकी शरीर-कोशिकाओं के केन्द्रक में स्थित गुणसूत्रों (chromosomes) के जीन्स (genes) के अनुसार होते हैं। अतः किसी एक जीव-जाति के सदस्यों के बीच लक्षणों की जितनी विभिन्नता होती है, उतनी ही विभिन्नता सदस्यों के व्यक्तिगत जीन-प्ररूपों, अर्थात् जीनोटाइप्स (genotypes) में होती है। एक ही जाति के सदस्यों के बीच जीन-प्ररूपों में तो विभिन्नता होती है, लेकिन गुणसूत्र-प्ररूप, अर्थात् कैरियोटाइप (karyotype)—गुणसूत्रों की संख्या, आकृतियाँ, रचना एवं विन्यास) सबका समान होता है। दूसरे शब्दों में, गुणसूत्र-प्ररूप जातीय लक्षण होता है। अतः स्पष्ट है कि विभिन्न जातियों के बीच उतनी ही असमानताएँ होती हैं, जितनी कि उनके गुणसूत्र-प्ररूप में उदाहरणार्थ, मानव जाति में गुणूसत्र 46 होते हैं। चिम्पांजी तथा ओरंग-उटान नामक किपयों में गुणसूत्र 48 होते हैं और ये मानव के गुणसूत्रों से काफी मिलते जुलते हैं। अतः इन किपयों से मानव-जाति के निकट के उद्विकासीय सम्बन्ध है।


गुणसूत्र-प्ररूप एवं जीन-प्ररूप के आधार पर विभिन्न जातियों के बीच उद्विकासीय सम्बन्धों की पृष्टि विभिन्न प्रकार के जीवों के परस्पर जनन (reproduction), अर्थात् संकरण (hybridization) से की जा सकती है। यह निश्चित ज्ञात हो चुका है कि कोई जीव अपनी ही जाति के अन्य सदस्यों से जनन करके सामान्य सन्तानोत्पत्ति कर सकता है, किसी अन्य जाति के सदस्यों से जनन करके नहीं। अतः यदि विभिन्न जातियों के सदस्यों में परस्पर संकरण (cross-breeding) कुछ सीमा तक सफल हो जाता है तो यह इन जातियों के घनिष्ठ विकासीय सम्बन्धों को प्रमाणित करता है। उदाहरणार्थ, घोड़ों

की जाति ईक्वस कैबेलस (Equus cabalus) तथा गधों की जाति ईक्वस ऐसीनस (Equus asimus) में संकरण (cross-breeding) सफल हो जाता है और वर्ण संकर खच्चर (mules) बन जाते हैं। यद्यपि खच्चर बंजर (sterile) होते हैं, अर्थात् ये जनन नहीं कर सकते, लेकिन ये सिद्ध करते हैं कि ईक्वस ऐसीनस और ईक्वस कैबेलस का आनुवंशिक पदार्थ काफी समान है। अतः घोड़ों और गधों का एक ही पूर्वज से विकास हुआ है। इसी प्रकार, प्रकृति में भी आकस्मिक संकरणों द्वारा नई वर्ण संकर जातियों की उत्पत्ति होती रहती है। टोड (Bufo), बत्तख आदि तथा पादपों में कपास, गेहूँ तम्बाकू, आलू आदि वर्ण संकर ही हैं। इसके अतिरिक्त, जीन्स (genes) में परिवर्तनों, अर्थात् उत्परिवर्तनों (mutations) के कारण सन्तानों के लक्षणों में स्थाई आनुवंशिक परिवर्तन हो जाते हैं। इनके फलस्वरूप भी अन्त में नई जातियों का विकास हो जाता है।

7. रक्षात्मक समरूपता या सादृश्यता (Protective Resemblance) से प्रमाण

इंगलिस्तान (Britain) के औद्योगिक नगरों के आस-पास के पेड़ चिमनियों के धुएँ से काले पड़ जाते हैं। इन क्षेत्रों के कीटों, विशेष तौर से पतंगों (moths) की विभिन्न जातियों में, गत सदी में,

औद्योगिक साँवलेपन (industrial melanism) का रोग हो गया। उदाहरणार्थ, पतंगों की बिस्टन बिटूलीरिया (Biston betularia) नामक जाति के शरीर व पंख हल्के रंग के काले धब्बेदार होते थे। सन् 1885, मैन्चेस्टर (Manchester) नामक शहर के पास इनकी आबादी में पहली बार एक बिल्कुल काला पतंगा देखा गया। वह परिवर्तन रंग के जीन में वातावरणीय दशाओं से प्रेरित जीन-उत्परिवर्तन (induced gene mutation) के कारण हुआ। बाद में काले पतंगों की संख्या बढ़ते-बढ़ते 98% हो गई। पतंगों की इस किस्म को कारबोनेरिया (Carbonaria) का नाम दिया गया। यह एक उद्विकासीय परिवर्तन था। इससे पतंगों का रंग पेड़ों के रंग से मिलता-जुलता हो गया तािक ये शत्रुओं (पिक्षयों) और शिकार की निगाहों से बच सकें।

चित्र सादृश्यता के दो उदाहरण

जीन-उत्परिवर्तन द्वारा वातावरण से रक्षात्मक समरूपता के अन्य उदाहरण भी मिलते हैं। इसे सादृश्यता (mimicry) कहते हैं। ऐसी तितिलयाँ होती हैं जो उन्हीं सूखी पत्तियों जैसी दिखाई देती हैं

जिन पर ये आराम के समय बैठती हैं। शाखाओं से मिलती-जुलती आकृति की कई कीट-जातियाँ पाई जाती हैं। ये सब दृष्टान्त "जैव विकास" को प्रमाणित करते हैं। इंगलिस्तान के पतंगों के सम्बन्ध में तो यहाँ तक कहा गया है कि इसमें "वैज्ञानिकों ने विकास-प्रक्रिया को होते हुए (Evolution in action) स्वयं देखा।"

मूल्यांकन

बहुविकल्पीय प्रश्न

- (1) पौधों एवं जन्त्ओं के बीच की संयोजी कड़ी है—
 - (अ) वाइरस

(ब) अमीबा

(स) यूग्लीना

(द) क्लेमाइडोमोनॉस

- 2. समरूप अंग होते हैं-
 - (अ) रचना में समान

(ब) कार्य विहीन

(स) कार्य में समान

(द) कर्म एवं रचना दोनों में समान

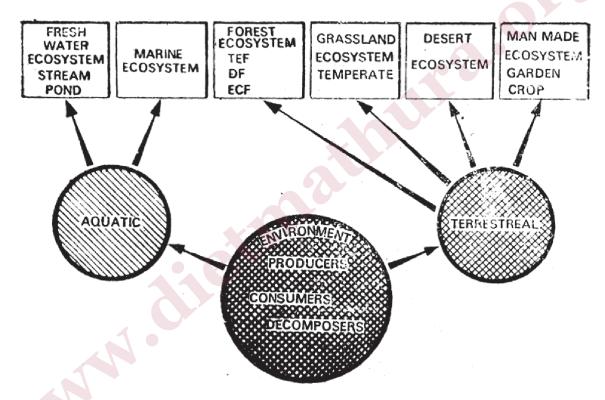
अतिलघु उत्तरीय प्रश्न

- 3. पेरिपेटस किन दो संघों के बीच की कड़ी है?
- 4. ऐनिलिडा तथा मौलस्का के बीच की कड़ी का नाम लिखिए।

लघु उत्तरीय प्रश्न

- 5. समजातता तथा समवृत्तिता में अन्तर स्पष्ट कीजिए।
- 6. तितली, पक्षी व चमगादड़ के पंख उड़ने का कार्य करते हैं, किन्तु फिर भी ये समवृत्ति अंग क्यों कहलाते हैं?

दीर्घ उत्तरीय प्रश्न


- 7. जैव विकास क्या है? जैव विकास में संयोजी कड़ियों के महत्व का उदाहरण सहित वर्णन कीजिए।
- 8. भ्रौणिकी से प्राप्त प्रमाणों के आधार पर जैव विकास की पुष्टि कीजिए।

परिस्थितिकीय तन्त्र व उसके घटक

टेन्सले (A. G. Tansley) ने 1935 में इकोसिस्टम (ecosystem) शब्द का प्रस्ताव किया जिसे हिन्दी में पारिस्थितिक तन्त्र कहा गया है। यह शब्द ecological system (पारिस्थितिक तन्त्र) का संक्षिप्त रूप है। इसके पहले मोबियस (Karl Mobius, 1877) ने जैवावासिकी (biocoenosis), फार्बस (S.

(23)

A. Forbes, 1887) ने सूक्ष्म जगत (microcosm) फ्रेडिंरिक (Frederic, 1930) ने पारिस्थितिक तन्त्र (holocoen) और थीनेयान (Thieneman, 1939) ने जैवतन्त्र (biosystem) आदि शब्द इसी सम्बन्ध में बनाये थे। प्रकृति (nature) एक इकोसिस्टम है। इसमें जीवीय (biotic living) और अजीवीय (abiotic) प्रकार के अवयव सिम्मिलित रहते हैं। पृथ्वी पर भूमि, जल तथा वायु के विभिन्न स्थानों में जीवन के संगठन की जीवमण्डल (biosphere) कहते हैं। 'Ecosphere' शब्द भी जीवमण्डल के पारितन्त्र का अर्थ रखता है। पृथ्वी का जीवमण्डल बहुत से छोटे-छोटे तन्त्रों से मिलकर बना होता है जिन्हें जीवोम (biome) कहते हैं। प्रत्येक जीवोम में पौधों और प्राणियों का एक निश्चित समुदाय जलवायु के द्वारा नियन्त्रित होकर गतिज संतुलन में रहता है।

चित्र : विभिन्न प्रकार के इकोसिस्टम

(TEF = Tropical evergreen forest, DF = Deciduous forest, ECF = Evergreen coniferous forest)

(1) परिभाषा (Definition)

ऊडम (E. P. Odum) के अनुसार इकोसिस्टम वह आधारभूत संरचनात्मक और क्रियात्मक इाकई है जिसमें जीवों और उनके वातावरण के बीच तथा उनके अपने घटकों में प्रतिक्रिया होती हैं। अन्य परिभाषा के अनुसार— ''पारितन्त्र या इकोसिस्टम, निश्चित वातावरण का प्राकृतिक तन्त्र होता है जिसमें जीवीय (biotic) एवं अजीवीय (abiotic) घटकों की प्रतिक्रिया के कारण उसकी संरचना और कार्यों का पारस्परिक आर्थिक सम्बन्ध निश्चित नियमों के अनुसार गतिज सन्तुलन में रहता है और जिसमें पदार्थ तथा ऊर्जा का चक्रीय प्रवाह सुनियोजित मागों से होता है।'' एक पारितन्त्र तालाब की एक बूँद जैसा छोटा या सूक्ष्म-पारितन्त्र (micro-ecosystem) अथवा समुद्र जैसा बड़ा या दीर्घ-पारितन्त्र (macro-ecosystem) हो सकता है। यह अस्थायी (temporary) हो सकता है (जैसे कि ताजे जल का तालाब या एक खेत) अथवा वह स्थायी (permanent) हो सकता है (जैसे एक जंगल या समुद्र)।

हमारी पृथ्वी भी एक बड़ा पारितन्त्र है जिसमें समस्त जीव समुदाय सौर-प्रकाश की ऊर्जा पर निर्भर रहता है तथा पृथ्वी के भौतिक वातावरण (वायु मण्डल, स्थल मण्डल और जल मण्डल) से सभी जीवनोपयोगी तत्वों को प्राप्त करता है।

एक घास का मैदान (grass-land) या एक छोटा तालाब (pond), समुद्र (sea), खेत (crop-field), जंगल (forest), मरूभूमि (desert), एक अन्तरिक्ष यान (space-ship) आदि किसी भी स्वरूप को पारितन्त्र माना जा सकता है। प्रत्येक पारितन्त्र में निम्नलिखित बातें अवश्य होती हैं—

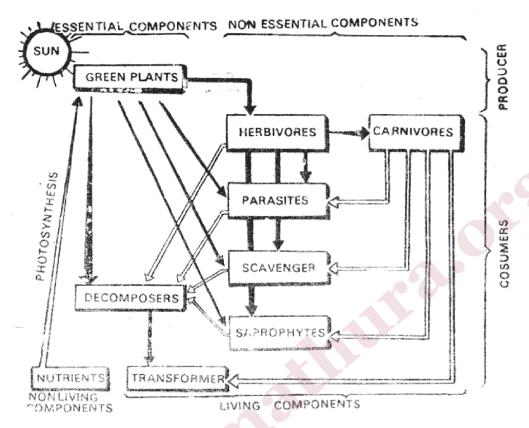
- (i) सभी जीवों के लिए किसी न किसी प्रकार का ऊर्जा स्रोत (energy source) होता है।
- (ii) जीवों के लिए आवश्यक भोज्य पदार्थों और पोषक तत्वों की पर्याप्त उपस्थिति होती है।
- (iii) ऊर्जा और पदार्थों का चक्रीय प्रवाह (cyclic flow) विभिन्न खाद्य-शृंखलाओं (food chains) के मार्ग से जीवों और वातावरण के बीच निरन्तर चलता रहता है।
- (iv) जलवायु की दशाओं (तापमान, आर्द्रता, प्रकाश) का नियमित परिवर्तन कम होता है।
- (v) विभिन्न घटकों का कार्यात्मक सन्तुलन रहता है जिसे homeostasis कहते हैं। यह विषय cybernetics कहलाता है।
- (अ) इकोसिस्टम की संरचना (Structure of Ecosystem)—सभी प्रकार के पारितन्त्रों में निम्नलिखित प्रकार के घटक (components) होते हैं। इन्हें दो प्रमुख भागों में बाँटते हैं—
 - (A) जीवीय घटक (Biotic components) (B) अजीवीय घटक (Abiotic components)

(A) जीवीय घटक (Biotic components)

प्रत्येक इकोसिस्टम में जीवीय-घटक विभिन्न पादपों और प्राणियों के समुदाय होते हैं जो पारस्परिक भोजन सम्बन्धों के अनुसार सन्तुलित होते हैं। ये निम्नलिखित प्रकार के होते हैं।

(a) उत्पादक (Producers) या स्वपोषित-घटक (Autotrophic component)—क्लोरोफिल युक्त एवं प्रकाश संश्लेषण क्रिया करने वाले सभी हरे पौधे प्राथमिक उत्पादक (primary producers) माने जाते हैं। इनमें स्वपोषण (autotrophic) का गुण होता है। यह पौधे अजीवी वातावरण से अकार्बनिक

पदार्थ (CO_2 , H_2O , salts) एवं ऊर्जा (सौर प्रकाश) का शोषण करके प्रकाश संश्लेषण (photosynthesis) क्रिया द्वारा ऐसे ऊर्जा युक्त कार्बनिक यौगिक (शर्करा, कार्बीहाड्रेट, प्रोटीन, वसा तथा अन्य) बनाते हैं जिनका उपयोग बाद में सम्पूर्ण जीव-जगत, प्रत्यक्ष या परोक्ष रूप से करता है।


$$6\text{CO}_2 + 12\text{H}_2\text{O} \xrightarrow{\text{Photosynthesis}} \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 + 6\text{H}_2\text{O}$$

$$\xrightarrow{\text{Sun light}} \text{C}_{Food}$$

उत्पादकों को Energy Converters या Transducers भी कहते हैं (Kormondy, 1969)। पृथ्वी की सतह के जीव मण्डल का लगभग 99% भाग उत्पादकों का बना होता है। अन्य सभी जीव उत्पादकों पर निर्भर करते हैं। उत्पादकों द्वारा वायुमण्डल की CO_2/O_2 के अनुपात का सन्तुलन बना रहता है।

- (b) परपोषित घटक (Heterotrophic component)—ये जीवधारी अपना भोजन स्वयं नहीं बना सकते हैं अतः अन्य जीवों से भोजन प्राप्त करते हैं। इन्हें उपभोक्ता (consumers) कहते हैं। इनके निम्नलिखित विभेद हैं—
 - (क) गुरु-उपभोक्ता (Micro-consumers)—इनको निम्नलिखित वर्गीं में बाँटते हैं—
- (i) प्राथमिक उपभोक्ता (Primary consumers)—अधिकतर शाकाहारी (herbivores) प्राथमिक उपभोक्ता होते हैं क्योंकि वे प्रत्यक्ष रूप से केवल पौधों से भोजन प्राप्त करते हैं। कुछ परजीवी (parasitic) पौधे या phytoparasites (जैसे जीवाणु, कवक इत्यादि) भी इसी वर्ग में होते हैं।
- (ii) द्वितीयक उपभोक्ता (Secondary consumers)—ये वे माँसाहारी (carnivorous) जन्तु हैं जो अन्य प्राथमिक उपभोक्ता प्रकार के शाकाहारी जन्तुओं को भोजन बनाते हैं जैसे हिरन का शेर द्वारा खाया जाना, चिड़ियों द्वारा टिड्डों को खाया जाना, साँप द्वारा चूहों को खाया जाना, बाज पक्षी द्वारा अन्य छोटे पक्षी खाये जाना, इत्यादि।
- (iii) उच्च या तृतीयक उपभोक्ता (Top or tertiary consumers)—ये वे जन्तु हैं जो माँसाहारी होते हैं परन्तु उन्हें भक्षण करने वाला कोई नहीं होता है। वे अन्य शाकाहारी या माँसाहारी जन्तुओं को भोजन बनाते हैं। इनमें सर्वभक्षी (omnivores) भी सम्मिलित होते हैं (जैसे मानव)।

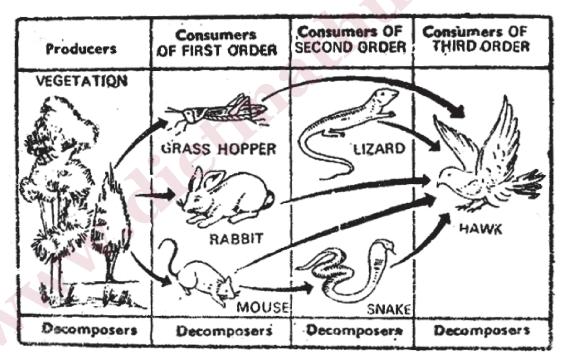
उत्पादक	प्राथमिक उपभोक्ता		द्वितीयक उपभोक्ता		उच्च उपभोक्ता	
घास	\rightarrow	हिरन	\rightarrow	भेड़िया	\rightarrow	शेर
घास	\rightarrow	टिड्डा	\rightarrow	चिड़िया	\rightarrow	बाज पक्षी
बीज फल	\rightarrow	चूहा	\rightarrow	बिल्ली	\rightarrow	अजगर साँप
पौधे	\rightarrow	मनुष्य				शेर

इकोसिस्टम के विभिन्न-घटकों में सम्बन्ध (आरेखीय-निरूपण)

(ख) अपघटनकर्ता (Decomposers) या सूक्ष्म उपभोक्ता (microconsumers)—जब उत्पादक (पौधे) तथा उपभोक्ता (जन्तु) मृत हो जाते हैं तो उनके पदार्थ कुछ मृतजीवी जीवों (saprophytic organisms) द्वारा विघटित होते हैं। इन्हें detrivores या scavengers भी कहते हैं। इनमें छोटे कीड़े, कृमि आदि के साथ अधिकतर कवक व जीवाणु वर्गों के जीव होते हैं। ये जटिल कार्बनिक अवशेषों को विघटित करके सरल अकार्बनिक यौगिकों (CO_2 , $\mathrm{H}_2\mathrm{O}$ खनिज लवण NH_3 इत्यादि) में बदल देते हैं। अपघटन-कर्ता को रूपान्तरक (transformers) भी कहते हैं। इस तरह प्रकृति में उत्पत्ति (construction) और संहार (destruction) का चक्र (cycle) निरन्तर चलता रहता है।

(B) अजीवीय-घटक (Abiotic Components)

इस तन्त्र में जीवों द्वारा उपयोगित निर्जीव पदार्थ एवं ऊर्जा, जलवायु के कारक, अजैविक क्रियायें आदि आती हैं। इसमें जल, भूमि, वायु की गैसें, मृदा के खनिज लवण, ताप, प्रकाश इत्यादि के स्रोत एवं उनको पाने के मार्ग सम्मिलित होते हैं।


(i) जलवायुवीय (Climatic)—जल, तापमान, प्रकाश, मिट्टी, भू-आकृति, आर्द्रता, वर्षा, कुहरा, पाला, बर्फ, इत्यादि।

- (ii) अकार्बनिक पदार्थ (Inorganic components)—लवणों के रूप में पाये जाने वाले खनिज तत्व—
 - C, H, O, N, P, K, Mg, Ca, Fe, S (macro-elements) B, Mo, Zn, Cu, Mn, Al, Co (micro-elements)
- (iii) वायु की गैसें O_2 , N_2 , CO_2 , H_2 , NH_3 इत्यादि।
- (iv) कार्बनिक-पदार्थ (Organic Compounds)—जैसे प्रोटीन, कार्बोहाइड्रेट, लिपिड्स विटामिन्स, हारमोन्स इत्यादि।
- (v) ऊर्जा (Energy)—प्रकाश, ताप।
- (ब) इक्रोसिस्टम की क्रियायें (Functions in Ecosystem)—प्रकृति में विभिन्न तत्वों एवं ऊर्जा रूपों का धारा-प्रवाह निरन्तर जीवीय और अजीवीय दोनों प्रकार के घटकों के बीच होता रहता है। यह एक चक्रीय-प्रक्रम (cyclic-process) होता है जो अनेक खाद्य-शृंखलाओं (food-chains) तथा खाद्य-जालों (food-webs) के माँगों से होकर चलता है। इस चक्रीय-प्रक्रम को खनिजों या तत्वों का चक्र (cycle of minerals or elements) या जीव-भूरासायनिक-चक्र (biogeochemical cycle) कहते हैं। इन्हीं चक्रों के द्वारा इकोसिस्टम में संतुलन बना रहता है (उदाहरण—कार्बन चक्र, नाइट्रोजन चक्र आदि)। प्रत्येक खाद्य-शृंखला में उत्पादक → उपभोक्ता → अपघटक का क्रम होता है। प्रत्येक पद को पोषण तल (trophic) कहते हैं। इन पोषण तलों के मात्रात्मक सम्बन्धों को विभिन्न-खाद्य पिरामिडों (food pyramids) के रूप में व्यक्त करते हैं।

(1) इकोसिस्टम में खाद्य शृंखलायें (Food-Chains In Ecosystem)

ऐसे कार्बनिक पदार्थ जिनका जन्नुओं और पादपों के शरीर में जैविक श्वसन क्रिया द्वारा ऑक्सीकरण होकर ऊर्जा उत्पन्न होती है, खाद्य या भोजन पदार्थ (food) कहलाते हैं। वे विभिन्न पद जिनसे खाद्य पदार्थों और ऊर्जा का इकोसिस्टम में एक निश्चित क्रम से स्थानान्तरण होता है, पोषण तल (food level = trophic level) कहलाते हैं। प्रकाश संश्लेषण द्वारा सबसे पहले उत्पादक हरे पौधे भोजन बनाते हैं। इसे प्रथम पोषण तल (T_1) कहते हैं। शाकाहारी प्राथमिक उपभोक्ता जो इन पौधों को खाते हैं दूसरा पोषण तल (T_2) बनाते हैं। इसके बाद माँसाहारी द्वितीयक उपभोक्ता (T_3) शाकाहारी जन्तु को खाता है। फिर T_3 को T_4 , T_5 आदि उपभोक्ता पोषण तल हो सकते हैं। अपघटक को T_6 पोषण तल पर रखते हैं। उदाहरण के लिए निम्नलिखित खाद्य कड़ियों पर ध्यान दें।

इकोसिस्टम	उत्पादक में	उपभोक्ता-1	उपभोक्ता-2	उपभोक्ता-3	उपभोक्ता-4	उपभोक्ता-5
इकासिस्टम	इपासिस्टन उत्पादक म		T ₂	T ₃	T ₄	T ₅
जंगल	वृक्ष	खरगोश	साँप	बाज पक्षी		
घास-मैदान	घास	टिड्डे	मेंढक	साँप	मोर	
समुद्र	पादप-प्लवक	जन्तु प्लवक	छोटी मछली	बड़ी मछली	सबसे बड़ी	Ó
					मछली	20
झील	शैवाल	प्रोटोजोआ	छोटे कीड़े	बड़े कीड़े	छोटी मछली	बड़ी मछली
	+	+	\	\		\
	अपघटक	अपघटक	अपघटक	अपघटक	अपघटक	अपघटक

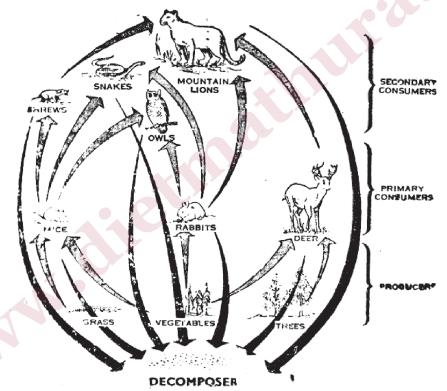
चित्र : इकोसिस्टम मे खाद्य-कड़ी के विभिन्न स्वरूप

अतः "खाद्य कड़ी (food chain) ऐसे जीवों का क्रम है जिसमें प्रत्येक पद पर पिछले पोषण तल के जीव और उसके ठीक अगले पोषक तल के जीव में भोज्य और भक्षक के रूप में सम्बन्ध होता है तथा किसमें होकर खाद्य और ऊर्जा का प्रवाह एक ही दिशा में होता रहता है। खाद्य कड़ी तीन प्रमुख प्रकार होती हैं—परभक्षी कड़ी (predator chain) परजीवी कड़ी (parasitic chain) और

मृतोपजीवी ही (saprophytic or detritus chain)। पर भक्षी कड़ी पौधों से होकर छोटे जन्तुओं और फिर बड़े जन्तुओं की ओर जाती है। परजीवी कड़ी बड़े जन्तुओं और पौधों से छोटे जीवों की ओर चलती है। मृतोपजीवी कड़ी मृत अवशेषों से सूक्ष्मजीवों में जाती है। एक ही इकोसिस्टम में अनेक खाद्य-कड़ियाँ साथ-साथ उपस्थित हो सकती हैं।

ECOSYSTEM	PRODUCER	CONSUMER	CONSUMER 2	CONSUMER 3	CONSUMER 4	CONSUMER 5	
TERRESTRIAL FOREST	TREES	RABBIT	SNAKE	HAWK		4 O	
MEADOW GRASSLAND	GRASS	34 GRASS- HOSPER	FROG	SNAKES	PEACOCK		
MARINE OCEAN	PHYTO- PLANKTON	ZOOPLAN-	SMALLFISH	BIG FISH	BIGGER FISH		
FRESH WATER POND	ALGAE	AMOEBA	SMALL INSECT	INSECT LARGE	SMALL FISH	BIGFISH	
	DECOMPOSERS						

चित्र : विभिन्न क्षेत्रों के पारिस्थितिक तन्त्रों में पायी जाने वाली खाद्य कडियाँ और उनके जीवीय घटक।


इकोसिस्टम के विभिन्न पोषण-तलों में जीवित पदार्थों की मात्रा को खड़ी फसल (Standing crop) कहते हैं। इसे किसी इकाई क्षेत्र में जीवों की संख्या, ताजा तौल (fresh weight) या शुष्क तौल (dry weight) या उसमें उपस्थित ऊर्जा के रूप में व्यक्त करते हैं। खड़ी फसल को जब मात्रा रूप में व्यक्त करते हैं।

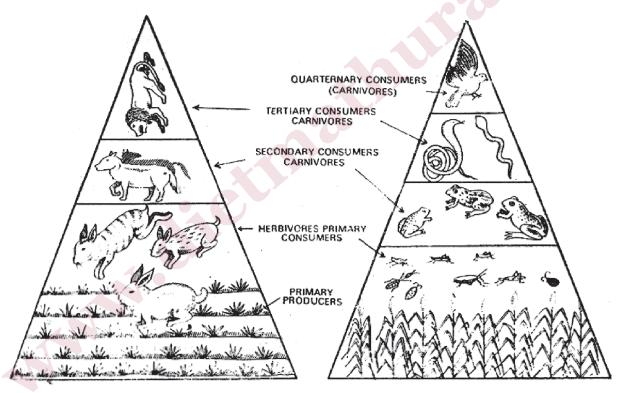
खाद्य जाल (Food Web)

वास्तविक इकोसिस्टम जटिल होता है क्योंिक इसमें बहुत सी खाद्य-कड़ियाँ होती हैं जो आपस में जुड़कर एक जाल-नुमा प्रबन्ध बनाती हैं। यह इस कारण है कि एक ही पोषण तल के जीव को अनेक प्रकार के जीव भोजन रूप में ग्रहण कर सकते हैं, अथवा एक ही जीव अनेक प्रकार के जीवों को खा सकता है। उदाहरण के लिए—साँप को मोर और बाज दोनों खा सकते हैं, घास को अनेक शाकाहारी खा सकते हैं (जैसे—गाय, बकरी, हिरन आदि), चूहे को साँप, चील बाज, बिल्ली सभी खा सकते हैं। इसी तरह शेर, हिरन, खरगोश, गाय आदि सबको खा सकता है। इस तरह एक ही जीव अनेक

खाद्य कड़ियों का सदस्य होकर उन्हें जोड़ता है। अतः खाद्य और ऊर्जा के स्थानान्तरण का मार्ग बहुदिशीय (multidirectional) हो जाता है और अनेक वैकल्पिक मार्गी (alternative pathways) को अपना सकता है।

सन्तुलित इकोसिस्टम (Balanced ecosystem) होने के लिए यह आवश्यक है कि उसमें खाद्य-जाल हो। अर्थात् खाद्य और ऊर्जा के भोज्य और भक्षक पदों द्वारा स्थानान्तरण के जितने ही अधिक वैकित्पिक मार्ग (alternate path) होते हैं उतना ही उसमें विभिन्न पोषण तलों पर के जीवों की संख्या स्थित रहती है। उदाहरणार्थ—यदि किसी इकोसिस्टम में खरगोश की संख्या कम हो जाये तो ऐसा समझा जा सकता है कि शायद उनके भक्षक बाज की संख्या कम हो जायेगी। परन्तु ऐसा नहीं होता, क्योंकि खरगोश कम होंगे तो वनस्पित कम नष्ट होगी और इसको चूहे खाकर अपनी संख्या बढ़ायेंगे। इस तरह सभी जीवों की संख्या स्थिर रहती है।

चित्र - इकोसिस्टमं खाद्य-जाल की रूपरेखा


पारिस्थितिक पिरामिड (Ecological Pyramid)

इकोसिस्टम के विभिन्न उत्तरोत्तर पोषण-तलों (trophic-level) में कार्बनिक खाद्य पदार्थों की मात्रा या जीवों की संख्या या संचित ऊर्जा के अनुपात (ratio) एक पिरामिड के आकार का सम्बन्ध बनाते हैं जिन्हें क्रमशः जीवभार-पिरामिड (biomass pyramid) जीवों की संख्या का पिरामिड (pyramid of

(31)

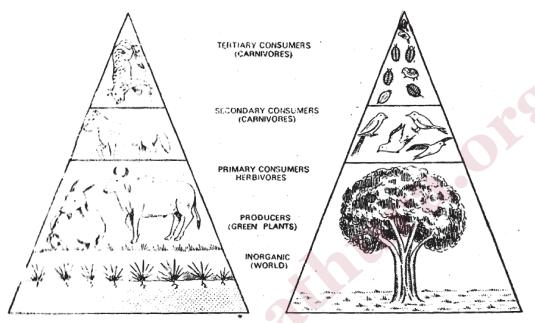
numbers or population) तथा ऊर्जा-पिरामिड (energy-pyramid) कहते हैं। Charles Elton (1927) ने सर्वप्रथम यह सम्बन्ध बताया था अतः इन्हें Eltonian pyramids भी कहते हैं। यदि शिकारी या भक्षक तथा शिकार या भोजन की मात्राओं का ध्यान दें तो हम देखेंगे कि भक्षकों (predator) की संख्या सदैव शिकार (prey) की संख्या से कम होती है।

(i) जीव-संख्या का पिरामिड (Pyramid of numbers)—िकसी इकोसिस्टम में उत्तरोत्तर पोषण तलों के जीवों की कुल संख्या का सम्बन्ध दिखाने वाला चित्र संख्या का पिरामिड बनाता है। उदाहरणार्थ —िकसी इकोसिस्टम में उत्पादक-पौधों की संख्या सबसे अधिक, प्रथम उपभोक्ता (शाकाहारी) जन्तुओं की संख्या उत्पादकों से कम, द्वितीय उपभोक्ताओं (माँसाहारी) की संख्या प्रथम उपभोक्ताओं से कम और इसी तरह अन्तिम उपभोक्ताओं की संख्या सबसे कम होती है। यदि सभी पोषण तत्वों के सम्पूर्ण जीवों की संख्या को चित्र द्वारा दिखायें तो सीधा (upright) पिरामिड बनता है जिसमें चौड़े

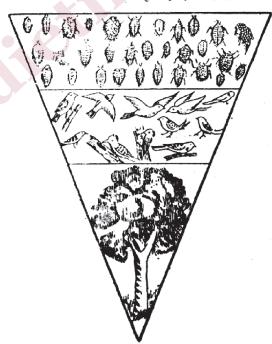
चित्र-जीव-संख्या का सीधा पिरामिड।

(नीचे) घास के मैदान के इकोसिस्टम में, (ऊपर) खेत के इकोसिस्टम में।

आधार के भाग पर मूल उत्पादक पौधे और शिखर पर अन्तिम उपभोक्ता स्थित होते हैं। घास स्थल (grassland), वन (forest), समुद्र और ताल (pond) आदि के इकोसिस्टम में संख्या का पिरामिड सीधा बनता है, जबकि जीवों का आमाप बढ़ता जाता है। जैसे—एक फसल या घास के मैदान में उत्पादक


पौधों की संख्या सबसे अधिक, उनको खाने वाले प्रथम शाकाहारी उपभोक्ता जन्तुओं (चूहे, खरगोश, कीड़े-मकोड़े) की संख्या पौधों से कम, फिर द्वितीयक माँसाहारी उपभोक्ताओं (मेंढक, सियार, भेड़िये) की संख्या शाकाहारियों से कम और अन्तिम उपभोक्ताओं (शेर, बाज पक्षी) की संख्या सबसे कम संख्या होती है। यह सीधा पिरामिड बनता है।

इसी तरह तालाब के इकोसिस्टम में उत्पादक स्तर के सूक्ष्म हरे शैवाल पादप-प्लवक (phyto plankton) होते हैं और इनकी संख्या सबसे अधिक होती है और वे पिरामिड का आधार बनाते हैं। फिर शैवालों के खाने वाले कुछ बड़े आमाप के प्रथम उपभोक्ता कीड़ों, घोंघों आदि की संख्या उत्पादकों से कम होती है, फिर द्वितीय उपभोक्ता मछलियों की संख्या और भी कम और सबसे कम अन्तिम उपभोक्ता (बड़ी मछली, सारस, बगुले आदि) होते हैं। अतः यह पिरामिड भी सीधा होता है।


यदि हम एक अकेले वृक्ष के इकोसिस्टम को लें तो संख्या का पिरामिड उल्टा (inverted) बनता है। एक अकेले पेड़ में उसके फलों को खाने वाली चिड़ियों की संख्या अधिक होती हैं; फिर उन चिड़ियों के शरीर का खून-चूसने वाले कीड़ों की संख्या चिड़ियों से भी अधिक होती हैं अतः इस बार उत्पादक से उपभोक्ता की दिशा में जीवों की संख्या का उल्टा पिरामिड बनता है जबिक जीवों का आमाप घटता जाता है।

- (ii) जीवभार का पिरामिड (Pyramid of Biomass)— इकोसिस्टम के विभिन्न पोषण तलों के सम्पूर्ण जीवों की कुल मात्रा (ताजा भार या शुष्क भार) उसका जीवभार (biomass) कहलाती है। किसी भी इकोसिस्टम के विभिन्न उत्तरोत्तर पोषण-तलों के समस्त जीवों के पूर्ण जीव-भारों (biomass) का सम्बन्ध दिखाने वाला चित्र जीव भार का पिरामिड बनाता है। उदाहरणार्थ—यदि हम एक स्थलीय (terrestrial) इकोसिस्टम को देखें तो उसमें उत्पादक स्तर के सभी पौथों का कुल भार सबसे अधिक होता है, फिर उसमें कम प्रथम-उपभोक्ता स्तर के सभी जीवों का भार, फिर इससे कम द्वितीय उपभोक्ता स्तर के सभी जीवों का भार होता है। अतः सीधा पिरामिड बनता है। वन के इकोसिस्टम में एक उत्पादक वृक्ष का भार सबसे अधिक, उस पर आश्रित प्रथम उपभोक्ता एक चिड़िया का भार वृक्ष के भार से कम, फिर चिड़ियों पर आश्रित द्वितीय उपभोक्ता किसी एक कीड़े का भार सबसे कम होता है। अतः पिरामिड सीधा है। इसके विपरीत यदि हम जलीय इकोसिस्टम में प्रत्येक पोषण-तल के जीवों का भार देखें तो पिरामिड उल्टा बनेगा क्योंकि संख्या घटने के साथ जीव भार अधिक दर से बढ़ता है। जैसे यदि हम तालाब के तन्त्र में देखें तो उसमें कुल शैवाल जीवों (उत्पादक) का भार सबसे कम, फिर सभी शाकाहारी छोटी मछिलयों (प्रथम उपभोक्ता) का भार अधिक फिर सभी माँसाहारी बड़ी मछिलयों का भार और भी अधिक होता है।
- (iii) ऊर्जा का पिरामिड (Pyramid of Energy)—सभी इकोसिस्टमों में ऊर्जा का पिरामिड सदैव सीधा बनता है। खाद्य कड़ी के प्रत्येक स्तर में संचित ऊर्जा-युक्त भोज्य पदार्थ का लगभग 90% भाग

तो श्वसन द्वारा समाप्त हो जाता है और बाकी बचा 10% भाग ही केवल शरीर बनाने के काम आता है जो अगले खाद्य स्तर में पहुँचता है। यदि प्रत्येक पोषण-तल पर संचित ऊर्जा का सम्बन्ध चित्रित करें तो ऊर्जा का पिरामिड बनता है जो सदैव सीधा होता है।

चित्र (अ)—जीव-मार का सीधा पिरामिड।
(बार्ये) घासीय मैदान के इकोसिस्टम में (दार्ये) एक पेड़ के इकोसिस्टम में।

वित्र (ब)--जीव संख्या का उल्टा पिरामिड ।

(34)

मूल्यांकन

बहुविकल्पीय प्रश्न

- 1. वायुमण्डल में गैसीय संतुलन बनता है, किसके द्वारा—
 - (क) उत्पादक

(ख) उत्पादक और उपभोक्ता

(ग) अपघटक

- (घ) उत्पादक, उपभोक्ता एवं अपघटक
- 2. खाद्य कड़ी में सही क्रम क्या है?
 - (क) घास-भेड़िया-हिरन-भैंस

(ख) जीवाण्-घास-खरगोश-भेड़िया

(ग) घास-कीड़ा-चिड़ियाँ-साँप

(घ) घास-साँप--कीड़ा-हिरन

अतिलघु उत्तरीय प्रश्न

- 3. यदि पृथ्वी के सभी पौधे मर जायें तो प्राणी भी मर जायेंगे, किसकी कमी से?
- 4. इकोसिस्टम में ऊर्जा का प्राथमिक स्रोत कौन है?

लघु उत्तरीय प्रश्न

- 5. इकोसिस्टम क्या है? इकोसिस्टम घटकों के नाम लिखिए।
- 6. खाद्य जाल को समझाइये।

दीर्घ उत्तरीय प्रश्न

- 7. पारिस्थितिक तन्त्र के उत्पादक, उपयोक्ता, अपघटनकर्ता प्रकार के घटकों के कार्य का वर्णन कीजिए।
- 8. किन्हीं दो पर टिप्पणी लिखिए—
- (i) अपघटक
- (ii) खाद्य पिरामिड
- (iii) खाद्य कड़ी

इकाई-2

खनिज एवं धातु : अयस्क, धातु का निष्कर्षण, धातु तथा अधातु में अन्तर

इस इकाई का अध्ययन करने के पश्चात् प्रशिक्षु निम्नवत् उप-प्रकरणों के विषय में जानेंगे—

- खनिज एवं अयस्क।
- धातुकर्म एवं धातुमल
- अयस्क निष्कर्षण के विभिन्न पद—
 - (क) पिसे अयस्क का सान्द्रण (Concentration)
 - (ख) निस्तापन (Calcination)
 - (ग) भर्जन (Roasting)
 - (घ) प्रगलन (Smelting)
 - (ङ) धातु का शोधन (Refining of the metal)
- धातु के गुण
- धातु तथा अधातु में अन्तर।

प्रशिक्षणार्थियों से चर्चा करें—

- चाकू एवं कुल्हाड़ी में प्रयुक्त धातु क्या होती है?
- घरों में बिजली आपूर्ति हेतु प्रयुक्त तार किन-किन धातुओं से बने होते हैं?

चर्चा उपरान्त प्रशिक्षणार्थियों से प्राप्त उत्तरों के आधार पर स्पष्ट करें अनेक वस्तुओं, वाहनों जैसे—खुरपी, हथौड़ी, कील, साइकिल, कार, बस आदि के निर्माण में लोहे का प्रयोग किया जाता है। बर्तन, विद्युत उपकरण आदि भी लोहे द्वारा निर्मित होते हैं। जीवन का ऐसा कोई भी क्षेत्र नहीं है जहाँ हम लोहे का प्रयोग प्रत्यक्ष व अप्रत्यक्ष रूप से न करते हों। यहाँ तक कि हमारे रक्त में भी लोहा उपस्थित है। ताँबे एवं एलुमिनियम से बर्तन, औजार, बिजली के तार, उपकरण, अस्त्रों का निर्माण होता है। सोने, चाँदी से आभूषण बनते हैं। ये सभी धातुएँ हैं।

पुनः चर्चा करें—

क्या ये धातुएँ मानव-निर्मित है?

(36)

- धातुएँ कहाँ से प्राप्त होती है?
- क्या ये धातुएँ जिस रूप में हैं उसी रूप में पायी जाती है?
- ईंधन हेतु प्रयुक्त कोयला, वाहन में प्रयुक्त डीजल, पेट्रोल आदि कहाँ से प्राप्त होते हैं?

चर्चा में आए बिन्दुओं को दृष्टिगत रखते हुए प्रशिक्षणार्थियों को बताएँ कि वास्तव में ये सभी धातुएँ, कोयला, डीजल, पेट्रोल आदि भूमि के अन्दर पायी जाती है। उपर्युक्त जो भी धातुएँ, कोयला, पेट्रोल, डीजल आदि पृथ्वी के खनन से प्राप्त होते हैं ''खनिज'' कहलाते हैं। अब प्रश्न उठता है कि क्या ये सभी धातुएँ, कोयला, पेट्रोल डीजल आदि जिस रूप में हमें दिखाई देती है क्या उसी रूप में जमीन के अन्दर पायी जाती है। प्रशिक्षणार्थियों को बताएँ वास्तव में कुछ ही धातुएँ जिस रूप में हैं उसी रूप में प्रकित में पायी जाती है। हम कह सकते हैं कि ये प्रकृति में मुक्त अवस्था में प्राप्त होती हैं, जैसे—सोना, चाँदी, प्लेटिनम मुक्त आदि। परन्तु अधिकांश धातुएँ प्रकृति में यौगिक के रूप में पायी जाती हैं, जैसे—लोहा, एलुमिनियम, मैंगनीज जैसी अनेक धातुएँ ऑक्साइड के रूप में तथा कुछ धातुएँ सल्फाइड, कार्बोनेट, हाइड्रॉक्साइड के रूप में पायी जाती हैं।

प्रशिक्षणार्थियों से परिचर्चा करके पुनः स्पष्ट करें—

कोई पदार्थ जिस रूप में खानों मूल-स्रोतों से प्राप्त किया जाता है, खनिज कहलाता है। खनिज पृथ्वी के तल पर, भूपर्पटी में तथा समुद्र में पाए जाते हैं।

प्रशिक्षणार्थियों की जानकारी हेतु स्पष्ट करें कि पृथ्वी से खोदकर निकालने पर इन सभी खनिज पदार्थों में अशुद्धियों के रूप में अन्य पदार्थ मिले होते हैं।

चर्चा प्रश्न

- ये खनिज पदार्थ कहाँ-कहाँ पाए जाते हैं?
- ये खनिज पदार्थ कितने प्रकार के होते हैं?
- अयस्क किसे कहते हैं?
- 🖣 क्या कुछ अयस्कों के नाम बता सकते हैं?

प्रशिक्षुओं से चर्चा उपरान्त आए हुए विचारों के आधार पर स्पष्ट करें कि वास्तव में ये खिनज पदार्थ के रूप में पृथ्वी की भू-पर्पटी से प्राप्त होते हैं। पृथ्वी के भू-पर्पटी का निर्माण विभिन्न प्रकार के तत्वों एवं यौगिकों से हुआ है। भू-पर्पटी में प्राकृतिक रूप से पाये जाने वाले अकार्बनिक तत्व अथवा यौगिकों को खिनज कहते हैं जैसे—क्वाट्ज, माइका (अभ्रक), हेमेटाइट, बॉक्साइट, अर्जेन्टाइट, ग्रेनाइट।

इनके अतिरिक्त और भी बहुत से खनिज प्रकृति में पाये जाते हैं। चट्टानें मुख्यतः सिलिकेटों की बनी हैं जो कि पृथ्वी पर सबसे सामान्य खनिज हैं। खनिज कहाँ पाए जाते हैं?

खनिज पृथ्वी के तल पर, भू-पर्पटी में तथा समुद्र में पाये जाते हैं। सोडियम क्लोराइड, सोडियम आयोडाइड, सोडियम आयोडेट आदि खनिज समुद्री जल में पाये जाते हैं। खनिज धातु तथा अधातु दोनों प्रकार के हो सकते हैं। स्फटिक, क्वाट्र्ज, अभ्रक आदि अधातु खनिज हैं। खनिज, धातु व अधातु तत्वों के यौगिक भी हो सकते हैं, जैसे—बॉक्साइट $Al_2O_3.2H_2O$ नामक खनिज एलुमिनियम (धातु) तथा ऑक्सीजन (अधातु) का यौगिक है। इसी प्रकार कॉपर ग्लॉस (Cu₂S) भी ताँबा (धातु) तथा सल्फर (अधातु) का यौगिक है। अधिकांश धातुएँ संयुक्त अवस्था में अपने यौगिकों के रूप में प्राप्त होती हैं। प्रकृति में केवल कुछ ही धातुएँ मुक्त अवस्था में पायी

चित्र बॉक्साइट (एल्मिनियम का खनिज)

चित्र मैंग्नेटाइट (लोहे का खनिज)

जाती हैं। उदाहरण के लिए सोना तथा प्लेटिनम जैसी धातुएँ तत्व के रूप में पायी जाती हैं। अन्य अधिकांश धातुएँ प्रकृति में यौगिकों के रूप में पायी जाती हैं। एलुमिनियम, लोहा और मैंगनीज जैसी अनेक धातुएँ ऑक्साइड के रूप में तथा कुछ धातुएँ सल्फाइड तथा कार्बोनेट के रूप में पायी जाती हैं।

अयस्क

लगभग सभी चट्टानों कुछ न कुछ मात्रा में धात्विक खनिज पाये जाते हैं, परन्तु कुछ में धातु की मात्रा इतनी कम होती है कि उससे धातु को निष्कर्षित (निकालना) करना कठिन एवं बहुत महँगा पड़ता है। यदि खनिज में धातु की मात्रा अधिक होती है तो उससे धातु का निष्कर्षण सरल एवं लाभकर होता है। ऐसे खनिज, जिनसे धातु का निष्कर्षण अधिक मात्रा में सरलता से एवं कम लागत में हो जाता है, अयस्क (Ore) कहलाते हैं। इस प्रकार हम समझ सकते हैं कि सभी अयस्क खनिज होते हैं परन्तु सभी खनिज अयस्क नहीं होते हैं।

धात्विक खनिज (अयस्क) किन-किन रूपों में पाये जाते हैं?

अयस्क धातुओं के ऑक्साइड, सल्फाइड, सल्फेट तथा कार्बोनेट के रूप में पाये जाते हैं। अधिकांश अयस्कों में केवल एक ही धातु उपस्थित होती है। कुछ प्रमुख अयस्क एवं उनसे निष्कर्षित किये जाने वाले धातु अधोलिखित तालिका में दर्शाये गये हैं—

तालिका

्रमन	अयस्क का	अयस्क में बहुतायत में उपलब्ध यौगिक	अयस्क का
धातु	नाम	का रासायनिक सूत्र	रूप
मैग्नीशियम	मैगनेसाइट	MgCO ₃	कार्बोनेट
जिंक	कैलेमाइन	ZnCO ₃	कार्बोनेट
लेड	गैलेना	PbS	सल्फाइड
कॉपर	कॉपर ग्लास	Cu ₂ S	सल्फाइड
आयरन	हेमेटाइट	Fe_2O_3	ऑक्साइड
एलुमिनियम	बॉक्साइट	$Al_2O_3.2H_2O$	ऑक्साइड
सिल्वर	अर्जेन्टाइट	Ag_2S	सल्फाइड
कैल्सियम	जिप्सम	CaSO ₄ 2H ₂ O	सल्फेट

कुछ और भी जानें :

कुछ अयस्कों मे प्रमुख धातु के अतिरिक्त अन्य धातु भी उपस्थित हो सकते हैं, जैसे— केल्को पाइराइट ($CuFeS_2$) में ताँबा, क्रोमाइट ($FeCrO_4$) में क्रोमियम, इलमेनाइट ($FeTiO_3$) में टाइटेनियम के साथ आयर्न (लोहा) भी उपस्थित होता है।

भारत में खनिज की उपलब्धता—

हम लोहा, ताँबा, चाँदी तथा अन्य कई धातुओं से बनी वस्तुओं का उपयोग अपने दैनिक जीवन में करते हैं। क्या आपने कभी सोचा है कि ये सभी धातुएँ कहाँ से प्राप्त होती हैं? हमारे देश में लोहा, ताँबा, सोना, एलुमिनियम आदि अनेक धातुएँ पृथ्वी की भू-पर्पटी में उपस्थित खनिजों से प्राप्त की जाती हैं। कुछ धातुएँ हमारे देश में उपलब्ध नहीं हैं। अतः हम उन धातुओं को अन्य देशों से आयात करते हैं। आइए अपने देश में पाये जाने खनिजों के बारे में जानकारी प्राप्त करें। भारत में पाये जाने वाले खनिज एवं उनके प्राप्त स्थान निम्नलिखित हैं—

धातु का नाम	अयस्क का नाम	प्राप्ति स्थान
लोहा	हेमेटाइट	बिहार, उड़ीसा, मध्य प्रदेश, कर्नाटक, तमिलनाडु, छत्तीसगढ़
ताँबा	कॉपर पाइराइट	आन्ध्र प्रदेश, बिहार, मध्य प्रदेश, राजस्थान
सोना	(मुक्त अवस्था में)	कोलार खान–कर्नाटक, आन्ध्र प्रदेश
एलुमिनियम	बॉक्साइट	मध्य प्रदेश, छत्तीसगढ़, बिहार, उड़ीसा, तमिलनाडु, गुजरात, जम्मू कश्मीर।
कैल्शियम	चूना पत्थर	यह सभी राज्यों में पाया जाता है। संगमरमर के रूप में यह राजस्थान तथा मध्य प्रदेश में पाया जाता है।

इन धात्विक खनिजों के अतिरिक्त देश में कुछ अधात्विक खनिज जैसे अभ्रक, कोयला, पेट्रोलियम पाये जाते हैं। पेट्रोलियम द्रव अवस्था में भू-पर्पटी से प्राप्त किया जाता है। इसलिए इसे खनिज तेल भी कहते हैं। अपने देश में इनकी उपलब्धता निम्नलिखित तालिका में प्रदर्शित हैं:

तालिका

अधात्विक खनिज	प्राप्ति स्थान
अभ्रक	बिहार, उड़ीसा, तमिलनाडु, राजस्थान।
बहुमूल्य पत्थर	राजस्थान
पेट्रोलियम	गुजरात, असम, अरब सागर के तटीय क्षेत्र तथा कावेरी कृष्ण, गोदावरी के मुहानों पर।
कोयला	पश्चिम बंगाल, बिहार, तिमलनाडु

भारत में सोना, ताँबा, जिंक (जस्ता) तथा टंगस्टन खनिजों की उपलब्धता बहुत कम है तथा प्लेटिनम खनिज का पूर्ण अभाव है।

धातुकर्म का सामान्य परिचय

(क) प्रकृति में धातुओं की उपस्थिति—प्रकृति में धातुएँ (i) मुक्त (free) अथवा प्राकृत (native) तथा संयुक्त (Combined) संयुक्त दोनों अवस्थाओं में पायी जाती हैं। प्लेटिनम, गोल्ड, सिल्वर तथा कॉपर आदि धातुएँ ही मुक्तावस्था में उपलब्ध हैं। अधिकांश धातुएँ अन्य तत्वों से संयुक्तावस्था में

(40)

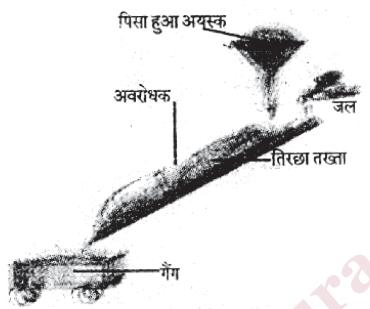
पायी जाती हैं और धातुओं के ये यौगिक पृथ्वी की ऊपरी पर्त में बालू, मिट्टी तथा अन्य अशुद्धियों से मिश्रित रूप में प्राप्त होते हैं। इन्हें खिनज (mineral) कहते हैं जिनमें कुछ निश्चित संघटन वाले तथा अन्य विविध संघटन वाले समांगी ठोस होते हैं। अयस्क (Ore) वह खिनज पदार्थ होता है जिससे धातु का निष्कर्षण सरलता से कम खर्च में एवं अधिक मात्रा में होता है। प्रायः ऑक्साइड, सल्फाइड तथा कार्बोनेट खिनज अयस्क होते हैं।

- (ख) धातुकर्म—अयस्क से शुद्ध धातु प्राप्त करने की क्रिया को धातुकर्म कहते हैं। यह निम्नलिखित पदों में संपन्न होती हैं—
 - 1. पिसे अयस्क का सान्द्रण (Concentration of the ore),
 - 2. निस्तापन (Calcination),
 - 3. भर्जन (Roasting)
 - 4. प्रगलन (Smelting),
 - 5. धातु का शोधन (Refining to the metal)।

अयस्क से धातु का निष्कर्षण

अयस्क से शुद्ध धातु कई क्रमिक प्रक्रमों के पश्चात प्राप्त होती है। अयस्क से अशुद्धियों को दूर करके धातु को निकालने तथा शुद्ध करने का प्रक्रम धातुकर्म कहलाता है। धातुकर्म प्रक्रमों को सुविधानुसार निम्नलिखित प्रमुख चरणों में बाँटा जा सकता है :

प्रश्न—अयस्क का सान्द्रण क्यों करते हैं? गुरुत्वीय पृथक्करण विधि एवं फेन प्लावन विधि कब और क्यों करते हैं?

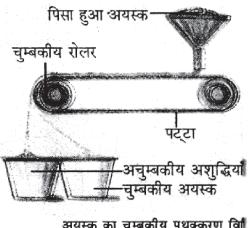

1. अयस्क का सान्द्रण

यह अयस्क का प्रारम्भिक उपचार होता है। जिसमें अशुद्धियों (मिट्टी, कंकड़, पत्थर आदि) को अलग कर लिया गया है। अयस्क से अशुद्धियों को पृथक करने की विधि सांद्रण कहलाती है। अयस्क का सान्द्रण अशुद्धि के स्वभाव के अनुरूप तीन विधियों से किया जा सकता है—

A. गुरुत्वीय पृथक्करण विधि

यदि अयस्क में पायी जाने वाली अशुद्धियाँ धातु से हल्की हों तो सान्द्रण की इस विधि का उपयोग करते हैं। इसमें अवरोधक लगे हुए लकड़ी के एक तख्ते को चित्र के अनुसार व्यवस्थित करते हैं। इस पर पिसा हुआ अयस्क गिराते हैं। इस अयस्क में अशुद्धियाँ मिली होती हैं। इन अशुद्धियों अयस्क से कैसे अलग करते हैं? इन्हें अलग करने के लिए चित्रानुसार जल की तेज धारा प्रवाहित करते हैं। जल के प्रवाह के कारण भारी अयस्क तो अवरोधकों के बीच रुक जाता है जबिक हल्की अशुद्धियाँ जल के बह जाती है।

(41)

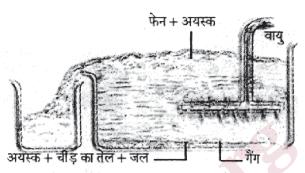

अयस्क का सान्द्रण

यदि अयस्क में उपस्थित अशुद्धि धातु से हल्की है तब सान्द्रण के लिए गुरुत्वीय पृथक्करण विधि व उपयोग किया जाता है।

B. चुम्बकीय पृथक्करण विधि—

यदि अयस्क में चुम्बकीय अशुद्धि उपस्थित हो तो सान्द्रण के लिए चुम्बकीय सान्द्रण विधि का उपयोग किया जाता है।

पिसे हुए अयस्क को चित्र के अनुसार चुम्बकीय पृथक्कारी की सहायता से सान्द्रित किया जाता है। चुम्बकीय पृथक्कारी में एक चमड़े का पट्टा होता है, जो दो रोलरों पर घूमता रहता है जिनमें से एक रोलर विद्युत चुम्बकीय होता है। बारीक पिसे हुये अयस्क को घूमते हुए पट्टे के एक सिरे पर डालते हैं। जब अयस्क चलते पट्टे के दूसरे सिरे के पास पहुँच कर गिरता है, तो अयस्क का चुम्बकीय भाग चुम्बक से आकर्षित होकर उसके समीप एक ढेर के रूप में इकट्ठा हो जाता है। इसी प्रकार चुम्बकीय अशुद्धियाँ चुम्बकीय अयस्क से दूर गिरकर एक पृथक ढेर बनाती हैं।


अयस्क का चुम्बकीय पृथक्करण विश

जिन अयस्कों या उनकी अशुद्धियों में च्म्बकीय गुण होते हैं उनमें अशुद्धियों को पृथक करने के लिए चुम्बकीय पृथक्करण विधि का उपयोग किया जाता है।

(42)

C. फेन प्लवन विधि

बारीक पिसे हुए अयस्क को बड़े हौंज में जल के साथ मिश्रित करके कर्दम (Slurry) बना लेते हैं। तत्पश्चात् उसमें चीड़ का तेल डालते हैं। सामान्यतः चीड़ के तेल से सल्फाइड अयस्क तथा गैंग को जल द्वारा गीला किया जाता है। इस कर्दम में जब तीव्र गित से वायु प्रवाहित की जाती है तो उसके फलस्वरूप तेल से चिपककर अयस्क के हल्के कण, (हल्का तेलफेन) जिसमें प्रमुखतः सल्फाइड

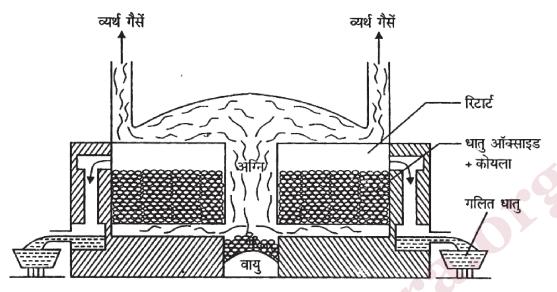
फेन प्लवन विधि द्वारा अयस्क का सान्द्रण

अयस्क है, ऊपर उठकर टैंक की ऊपर सतह पर आकर मलफेन (मैल झाग) के रूप में तैरने लगते हैं। तत्पश्चात् इस मलफेन को वायु में सुखाकर अयस्क के कण प्राप्त कर लेते हैं। इस विधि को फेन प्लवन विधि कहते हैं चूँकि अशुद्धियों के कण भारी होते हैं अतः टैंक के तल पर एकत्रित हो जाते हैं।

सल्फाइड अयस्क का सान्द्रण फेन प्लवन विधि द्वारा किया जाता है।

निस्तापन (Calcination)

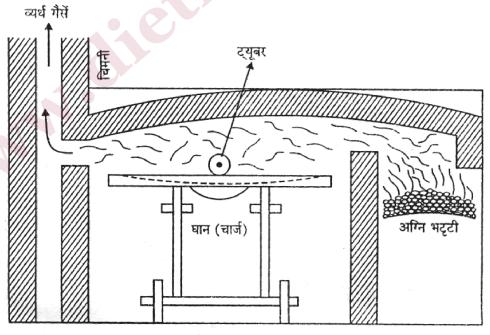
अयस्क को वायु की अनुपस्थिति में उसके गलनांक से नीचे गर्म करके धातु ऑक्साइड में बदलने की क्रिया को निस्तापन कहते हैं। जैसे—लेड कार्बोनेट ($PbCO_3$) युक्त अयस्क को गर्म करने पर लेड कार्बोनेट लेड ऑक्साइड (PbO) में परिवर्तित हो जाता है। इसी प्रकार जलयुक्त ऑक्साइड एवं हाइड्रॉक्साइड का भी निस्तापन करते हैं।


चर्चा प्रश्न

- निस्तापन विधि में आवश्यक गर्त क्या है?
- निस्तापन विधि द्वारा किस-किस प्रकार की अशुद्धियों को दूर करते हैं?

आओं जानें-भट्टियों के प्रकार

भिंदुयाँ (Furnaces)—धातुओं के निष्कर्षण में विभिन्न प्रकार की भिंदुयों का उपयोग किया जाता है। कुछ प्रमुख भिंदुयाँ निम्नलिखित हैं—


1. मफल भट्टी (Muffle Furnace)—मफल भट्टी में गर्म किया जाने वाला पदार्थ ईंधन या गर्म गैसों या ईंटों के सीधे सम्पर्क में नहीं आता है। यह उच्च ताप-सह ईंटों के बने हुए एक कक्ष में रहता है, जिसे मफल कहते हैं। मफल ईंधन की ज्वाला तथा गर्म गैसों द्वारा गर्म होता है।

चित्र 10.1 : मफल भट्टी

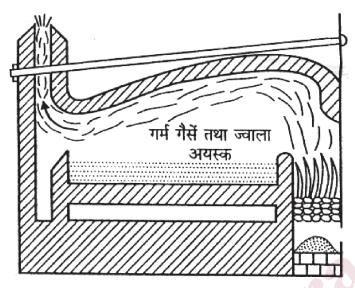
2. परावर्तनी भट्ठी (Reverberatory Furnace)—यह भट्ठी अग्निसह ईंटों की बनी होती हैं। इसमें गर्म किये जाने वाला अयस्क सीधे ज्वाला के सम्पर्क में नहीं आता है। भट्ठी में ईंधन अलग अंगीठी में जलाया जाता है।


परावर्तनी भट्टी निस्तापन तथा भर्जन क्रियाओं के लिए उपयोगी है। इसमें ऑक्सीकरण तथा अपचयन दोनों प्रकार की क्रियाएँ करायी जाती हैं।

चित्रः परावर्तनी भट्ठी

(44)

- 3. वात्या (Blast Furnace)—यह भट्टी एक ऊँची मीनार की भाँति होती है। वात्या भट्टी की ऊँचाई 25 से 60 मीटर तथा व्यास 6 से 8 मीटर होता है। इस भट्टी के तीन मुख्य भाग होते हैं—हॉपर, भट्टी की बॉडी तथा बॉश एवं चूल्हा। इसमें अयस्क और कोक मिलाकर गर्म करते हैं। वात्या भट्टी का उपयोग ताँबा, लोहा आदि धातुओं के निष्कर्षण में किया जाता है।
- 4. बेसेमर परिवर्तक (Blast Furnace)—यह लोहे का बना एक पात्र होता है जिसके बगल में एक द्वार होता है जिससे वायु का तेज झोंका अन्दर भेजा जाता है। परिवर्तक में पिघला हुआ अयस्क रखकर वायु प्रवाहित की जाती है। इससे अपद्रव्यों का ऑक्सीकरण होता है तथा ऊष्मा उत्पन्न होती है। बेसेमर परिवर्तक का उपयोग ताँबा तथा लोहे के निष्कर्षण में किया जाता है।
- 5. विद्युत भिट्टियाँ (Electric Furnances)—विद्युत भिट्टियों का उपयोग तब किया जाता है जब ऊँचे ताप की आवश्यकता होती है। विद्युत भिट्टियाँ कई प्रकार की होती हैं; जैसे—प्रेरण भट्टी (Induction furnance), प्रतिरोधक भट्टी (Resistance furnance) तथा आर्क भट्टी (Arc furnance)।



चित्र : आर्क भद्री

इनमें **आर्क भट्ठी** का उपयोग अधिक होता है। इस भट्ठी में दो कार्बन इलेक्ट्रोडों के बीच विद्युत धारा प्रवाहित करके विद्युत आर्क उत्पन्न किया जाता है। आर्क भट्ठी में 3000°C से 3500°C तक ताप उत्पन्न होता है।

3. भर्जन (Roasting)—अयस्क को वायु की उपस्थिति में उसके गलनांक से कम ताप तक गरम करके ऑक्साइड में परिवर्तित करने की प्रक्रिया को भर्जन कहते हैं। जैसे—कॉपर सल्फाइड (Cu_2S) युक्त अयस्क वायु में गरम करने पर वह कॉपर ऑक्साइड (CuO) में परिवर्तित हो जाता है। साथ ही सल्फर, फॉस्फोरस आदि की अशुद्धियाँ वाष्पशील ऑक्साइड बनकर निकल जाती हैं।

कॉपर सल्फाइड + ऑक्सीजन <u>गरम करने पर</u> कॉपर ऑक्साइड + सल्फर डाई ऑक्साइड

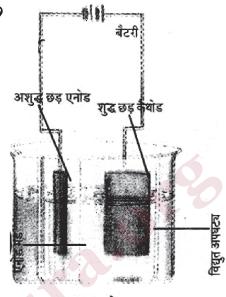
परावर्तक भट्टी द्वारा अयस्क का भर्जन

चर्चा प्रश्न—

- अयस्कों का प्रगलन क्यों करते हैं? चर्चा उपरान्त स्पष्ट करें।
- 4. प्रगलन (Smelting)—भर्जन या निस्तापन के पश्चात् प्रगलन की क्रिया एक विशेष प्रकार की भट्ठी में की जाती है। जैसे भर्जित हेमेटाइट अयस्क को कार्बन (कोक) और चूना पत्थर के साथ मिला कर वात्या भट्टी में प्रगलन करने पर विभिन्न क्रियाओं के पश्चात् कच्चा लोहा (पिग आयरन) प्राप्त होता है। प्रगलन की क्रिया में अगलनीय अशुद्धियों को गलनीय बनाकर दूर किया जाता है।

धातु का शोधन (Refining of Metal)

अयस्क से प्राप्त अशुद्ध धातुओं का शोधन कैसे किया जाता है?


प्रगलन से प्राप्त धातु में अनेक अशुद्धियाँ मिली **धातु मल 4** होती हैं। अशुद्धि युक्त कुछ धातुओं को विद्युत अपघटनी विधि द्वारा शुद्ध किया जा सकता है।

(46)

विद्युत अपघटन किस प्रकार किया जाता है?

एक बड़े टैंक में शोधित किये जाने वाले धातु के लवण का विलयन लेते हैं, जिसे विद्युत अपघट्य (Electrolyte) कहते हैं। अशुद्ध धातु की छड़ को एनोड के रूप में तथा शुद्ध धातु की एक छड़ को कैथोड़ के रूप में प्रयोग करते हैं और उन्हें विलयन में चित्र के अनुसार डुबाते हैं। दोनों छड़ों को तार द्वारा बैटरी से जोड़ते हैं। विलयन में विद्युत धारा प्रवाहित करते हैं जिसके फलस्वरूप एनोड से धातु के आयन विलयन में जाते हैं फिर विलयन से निकलकर कैथोड़ पर शुद्ध धातु के रूप में जमने लगते हैं। अशुद्धियाँ टैंक के पेंदे में "एनोड़ मड" के रूप में बैठ जाती हैं।

धात् का शोधन

चर्चा प्रश्न—

• पिग आयरन क्या है? चर्चा उपरान्त स्पष्ट करें।

पिग आयरन

वात्या भट्टी से प्राप्त लोहा "पिग आयरन" (कच्चा लोहा) कहलता है। इसमें 93% लोहा, 4-5% कार्बन तथा शेष सल्फर, फॉस्फोरस, सिलिकॉन की अशुद्धियाँ उपस्थित होती हैं जिसके कारण इसका गलनांक कम होता है यह भंगुर होता है। इसका उपयोग पाइप, स्टोरेज टंकी, नहाने के टब, कूड़ादान आदि बनाने में किया जाता है।

चर्चा प्रश्न—

धातुओं के मुख्य गुण क्या-क्या है? चर्चा उपरान्त प्रशिक्षणार्थियों को स्पष्ट करें।

धातुओं में भौतिक गुण

भौतिक अवस्था—

1. कठोर—लोहा, ताँबा (कॉपर), एलुमिनियम, मैग्नीशियम तथा जिंक (जस्ता) के टुकड़े एकत्र करें। ये सभी धातु किस अवस्था में हैं? सामन्य ताप पर प्रायः सभी धातु ठोस होते हैं परन्तु पारा द्रव होता है।

(47)

क्रियाकलाप—

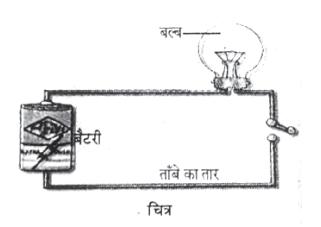
(क्रियाकलाप अध्यापक की देख-रेख में किया जाय।)

सोडियम धातु का टुकड़ा लेकर उसे छन्ना कागज से सुखा लें। धातु के टुकड़े को चाकू से काटें। क्या देखते हैं? सोडियम धातु का टुकड़ा आसानी से कट जाता है। अब लोहा, कापर, जिंक आदि के टुकड़े को भी चाकू से काट। क्या देखते हैं? धातुएँ प्रायः कठोर होती हैं अतः उन्हें काटना अत्यन्त कठिन होता है।

नोट: सोडियम, पोटैशियम, मैग्नीशियम तथा पारा को छोड़कर अन्य सभी धातुएँ कठोर होती हैं।

2. चमक

यदि आप धातुओं की सतह को उन्हें काटने के तत्काल बाद देखें तो आप पायेंगे कि वह दिखने में चमकदार होती हैं। इसे धात्विक चमक कहते हैं। धातुओं की यह चमक उन्हें आभूषण और सजावट की वस्तुएँ बनाने के लिए उपयोगी बनाती हैं।


3. अघातवर्ध्यनियता (पीटने पर धातुओं के फैलने का गुण)

क्रिया कलाप—

एल्यूमीनियम, कॉपर तथा आयरन का छोटा टुकड़ा लेकर उसे हथौड़े से पीटें। क्या देखते हैं? हथौड़े से पीटने पर धातु के टुकड़े पहले की अपेक्षा और अधिक चपटे हो जाते हैं। धातुओं को पीट कर (आघात पहुँचा कर) चादरों के रूप में परिवर्तित करने के गुण को ''अघातवर्ध्यनियता'' कहते हैं। चाँदी तथा सोना में अघातवर्धनीयता का गुण अधिक होता है जबकि जस्ता कम अघातवर्धनीय है।

4. तन्यता

धातुओं को खींच कर तार बनाया जा सकता है। धातुओं को तार के रूप में परिवर्तित करने के गुण को 'तन्यता' कहते हैं। अपने ताँबे, एल्यूमीनियम और आयरन के तार देखें होंगे। हमारे घरों में विद्युत सम्बन्धी कार्यों में ताँबे तथा एल्यूमीनियम के तारों का उपयोग होता है। तार जाली को बनाने के लिए लोहे के तारों का प्रयोग किया जाता है।

कुछ और भी जानें

सोने की इतनी पतली चादर बनायी जा सकती है कि 20 लाख चादरों की मोटाई केवल एक सेन्टीमीटर होगी।

एक ग्राम सोने से लगभग-2 किलोमीटर लम्बा तार बनाया जा सकता है।

चालकता

क्रिया कलाप

एक टॉर्च बल्ब को ताँबे के तार द्वारा एक बैटरी से (चित्र 3.7) जोड़ दें। क्या देखते हैं? बल्ब प्रकाशित हो जाता है। अब ताँबे के तार के स्थान पर एल्यूमीनियम, आयरन आदि का तार लगाएँ।

क्या होता है? सभी स्थितियों में बल्ब प्रकाशित हो जाता है।

सभी धातुएँ विद्युत की सुचालक हैं। क्योंकि इनसे विद्युत का प्रवाह संभव है।

क्रिया कलाप

लोहे की छड़ के एक सिरे को हाथ से पकड़ कर दूसरे सिरे को गरम करें। कुछ समय बाद क्या अनुभव होता है?

छड़ का दूसरा सिरा भी गरम हो जाता है। अब इसी प्रयोग को कॉपर, जिंक, एल्यूमीनियम के छड़ द्वारा भी दोहराएँ। क्या होता है? सभी छड़ गरम हो जाते हैं।

इसका अर्थ है छड़ के एक सिरे पर दी गई ऊष्मा दूसरे सिरे तक पहुँच जाती है, अतः छड़ें ऊष्मा की चालक हैं।

धातुओं के रासायनिक गुण :

1. ऑक्सीजन से अभिक्रिया

धातु ऑक्सजीन से अभिक्रिया करके ऑक्साइड बनाते हें। सोडियम तथा पोटैशियम कमरे के सामान्य ताप पर क्रिया करके ऑक्साइड बनाते हैं।

$$2Mg + O_2 \rightarrow 2MgO$$

मैग्नीशियम ऑक्सीजन सोडियम ऑक्साइड

क्या आप जानते हैं?

सोडियम तथा पोटैशियम के अधिक क्रियाशील होने के फलस्वरूप इन्हें ऑक्सीकरण (ऑक्सीजन के साथ जुड़ना) से बचाने के लिए मिट्टी के तेल में डुबा कर रखते हैं।

क्रिया कलाप

मैंग्नीशियम का एक तार लें। उसे चिमटे की सहायता से पकड़ कर जलाएँ। क्या देखते हैं? मैंग्नीशियम का तार जलकर सफेद पाउडर में परिवर्तित हो जाता है। यह सफेद पाउडर मैंग्नीशियम ऑक्साइड है।

$$2 {
m Mg} + {
m O}_2
ightarrow 2 {
m MgO}$$

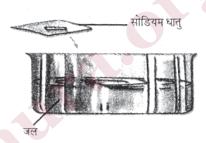
मैग्नीशियम ऑक्सीजन मैग्नीशियम ऑक्साइड

(49)

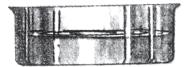
चर्चा प्रश्न—

- सोडियम के टुकड़े को खुले में क्यों नहीं रखना चाहिए?
- धातुएँ पानी (जल) से क्रिया करके क्या बनाती है?

प्रशिक्षुओं से चर्चा करने के उपरान्त आए हुए अनुभवों के आधार पर स्पष्ट करें—


2. जल के साथ अभिक्रिया :

धातु जल के साथ क्रिया करके धातु हाइड्रॉक्साइड/ऑक्साइड तथा हाइड्रोजन गैस बनाते हैं।


क्रिया कलाप

सोडियम धातु का एक छोटा टुकड़ा लेकर छन्ना कागज से सुखा लें। काँच के एक बर्तन को पानी से आधा भरें तथा सोडियम के टुकड़े को पानी में डाल दें। क्या दिखाई देता है? धातु का टुकड़ा जल की सतह पर तीव्र गित से इधर-उधर घूमता हुआ दिखायी देता है। सोडियम धातु जल के साथ तीव्र गित से अभिक्रिया करके सोडियम हाइड्रॉक्साइड तथा हाइड्रोजन गैस बनाता है।

$$2Na + 2H_2O \rightarrow 2NaOH + H_2$$
 सोडियम जल सोडियम हाइड्रॉक्साइड हाइड्रोजन गैस

हाइड्रोजन गैस

चित्र सं0 3.6

क्या अब आप बता सकते हैं कि सोडियम को कैरोसीन में क्यों रखा जाता है? मैग्नीशियम भाप या गर्म पानी के साथ क्रिया करके मैग्नीशियम ऑक्साइड तथा हाइड्रोजन गैस बनाता है।

$$Mg + H_2O
ightarrow MgO + H_2 \uparrow$$

मैंग्नीशियम जल मैंग्नीशियम ऑक्साइड हाइड्रोजन गैंस

3. अम्ल के साथ अभिक्रिया :

क्रिया कलाप

एक परखनली में छोटा खेदार जस्ते का टुकड़ा लें। अब उसमें 10 मिली तनु हाइड्रोक्लोरिक अम्ल डालें। क्या देखते हैं?

रंगहीन एवं गंधहीन गैस बुलबुले के रूप में निकलती हुई दिखाई देती है। जलती हुई माचिस की एक तीली को परखनली के मुख पर ले जाकर निकलने वाली गैस का परीक्षण करें। हाइड्रोजन 'पक' की ध्वनि उत्पन्न करते हुये जलती है।

(50)

जस्ता हाइड्रोक्लोरिक अम्ल के साथ क्रिया करके जिंक क्लोराइड तथा हाइड्रोजन गैस बनता है।

$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$
 जिंक (जस्ता) तनु हाइड्रोक्लोरिक अम्ल जिंक क्लोराइड हाइड्रोजन गैस

चर्चा प्रश्न

- धातु एवं अधातु मुख्यतः कौन-कौन सा अन्तर है?
- धातु एवं अधातुओं की सूची तैयार करें।

चर्चा उपरान्त स्पष्ट करें—

धातु और अधातु में भिन्नता

(Differences between Metals and Non-metals)

धातुओं के अपने कुछ विशेष गुण होते हैं जिनके आधार पर धातुओं को अधातुओं से पृथक किया जा सकता है। निम्नलिखित तालिका में इनके गुणों की तुलना करते हुए, इनकी विशेषताओं का वर्णन किया गया है—

	धातु (Metals)	Z	अधातु (Non-metals)
भौ	तिक गुण		
1.	अवस्था—धातु सामान्यतया ठोस होते हैं, जैसे—	1.	अधातु ठोस, द्रव और गैस तीनों अवस्थाओं में होते
	लोहा, ताँबा, सोडियम (पारे को छोड़कर)। उनमें		हैं। जैसे—गंधक ठोस, ब्रोमीन द्रव और ऑक्सीजन
	आघातवर्ध्यता और तार में खिंचने के गुण होते हैं।		गैस है। अधातु ठोस भुरभुरे होते हैं।
2.	पारदर्शिता—थातु अपरादर्शी होते हैं।	2.	कुछ धातु पारदर्शी (जैसे गैसें), कुछ अपारदर्शी तथा कुछ पारभासी होते हैं।
3	घनत्व तथा गलनांक —धातु (सोडियम एवं	3	
	पोटैशियम को छोड़कर) अधिक घनत्व एवं उच्च		है।
	गलनांक के होते हैं।		
4.	चमक—थातुओं में विशेष चमक होती है जिसे	4.	ग्रेफाइट, हीरा और आयोडीन के अतिरिक्त अन्य
	धात्वीय चमक (metallic luster) कहते हैं।		अथातुओं में कोई विशेष चमक नहीं होती।

- 5. चालकता—सभी धात् ऊष्मा एवं विद्युत के 5. ग्रेफाइट तथा गैस-कार्बन के अतिरिक्त अधात् ऊष्मा सुचालक होते हैं।
- 6. ध्वनि—किसी कठोर वस्तु से टकराने पर धातुओं से 6. अधातु कोई विशेष ध्वनि उत्पन्न नहीं करते। टंकार ध्वनि (metallic sound) उत्पन्न होती है।
- गैर विद्युत के कुचालक होते हैं।

रासायनिक गुण

- (basic) होते हैं। परन्तु एलुमिनियम, जिंक तथा टिन के ऑक्साइड उभयधर्मी होते हैं।
- 2. अम्लों से क्रिया—कुछ धातुएँ अम्लों से क्रिया 2. अधातुएँ अम्लों से हाइड्रोजन विस्थापित नहीं करती करके हाइड़ोजन को विस्थापित करती है तथा लवण बनाती है।
- से संयोग नहीं करती। कुछ धातुएँ (जैसे लिथियम, सोडियम तथा पोटैशियम, हाइड्रोजन से संयोग करके अस्थायी यौगिक बनाती है।
- 4. विद्युतीय प्रकृति—धातुएँ धन-विद्युती होने के 4. अधातुएँ हाइड्रोजन के अतिरिक्त ऋण-विद्युती होने के कारण विद्युत अपघटन करने पर कैथोड पर एकत्र होती है।
- 5. मिश्रधातु—कुछ धातुएँ अन्य धातुओं से मिलकर 5. अधातुएँ मिश्र अधातु नहीं बनातीं। मिश्र धात् (alloys) बनाती है। जैसे—पीतल, काँसा आदि।

- 1. **क्षारीय प्रकृति**—धातुओं के ऑक्साइड क्षारीय 1. अधातुओं के ऑक्साइड अम्लीय (acidic) होते हैं-परन्तू हाइड्रोजन के ऑक्साइड एवं कार्बन मोनोक्साइड उदासीन होते हैं।
 - एवं लवण नहीं बनाती।
- 3. **हाइड्रोजन से संयोग**—अधिकांश धातुएँ हाइड्रोजन 3. अधातुएँ हाइड्रोजन से संयोग करके स्थायी यौगिक बनाती है, जैसे मेथेन (CH4) अमोनिया (NH3) फॉस्फीन (PH3) हाइड्रोजन क्लोराइड (HCl) आदि।
 - कारण विद्युत अपघटन करने पर ऐनोड पर एकत्र होती है।

चर्चा प्रश्न—

- धातुओं की सक्रियता के विषय में क्या जानते हैं?
- विद्युत रासायनिक श्रेणी क्या है?
- जिंक एवं सोडियम धात् में कौन सी धात् अधिक सिक्रय है?

चर्चा उपरान्त स्पष्ट करें—

धातुओं की सक्रियता [Activity of metals]

विद्युत-रासायनिक श्रेणी (Electro-Chemical Series)

निम्नांकित तथ्यों पर विशेष ध्यान दें :

- (1) यदि कॉपर सल्फेट के विलयन में लोहे का चाकू (स्टील का नहीं) अथवा जिंक के कुछ टुकड़े कुछ देर रखे जायें तो चाकू या जिंक पर कॉपर धातु की लाल परत चढ़ जाती है। इसका अर्थ यह है कि आयरन (iron) या जिंक (Zinc) कॉपर सल्फेट के विलयन से कॉपर को विस्थापित करते हैं तथा यही मुक्त कॉपर, लोहे या जिंक पर जमा हो जाता है। अर्थात् आयरन एवं जिंक रासायनिक संयोग करने में कॉपर से अधिक सिक्रय है।
- (2) पोटैशियम या सोडियम का टुकड़ा ठण्डे जल में डालने पर जल से हाइड्रोजन को विस्थापित कर देता है, एवं जल के OH^- आयन से मिलकर हाइड्रॉक्साइड बनाता है परन्तु लोहा, जिंक, कॉपर आदि जल से हाइड्रोजन विस्थापित नहीं कर पाते अर्थात् सोडियम एवं पोटैशियम, जल से क्रिया करने में, आयरन आदि की अपेक्षा अधिक सिक्रय है।
- (3) आयरन, जिंक, टिन आदि धातुएँ, तनु एसिडों (जैसे हाइड्रोक्लोरिक एसिड, सल्फ्यूरिक एसिड आदि) से क्रिया करके हाइड्रोजन विस्थापित करती है, परन्तु कॉपर, मरकरी, आदि तनु एसिडों से हाइड्रोजन विस्थापित नहीं करते। अर्थात् जिंक, आयरन, टिन आदि धातुएँ यौगिक बनाने में हाइड्रोजन की अपेक्षा अधिक सिक्रय है परन्तु कॉपर, मरकरी आदि हाइड्रोजन की अपेक्षा कम सिक्रय है।

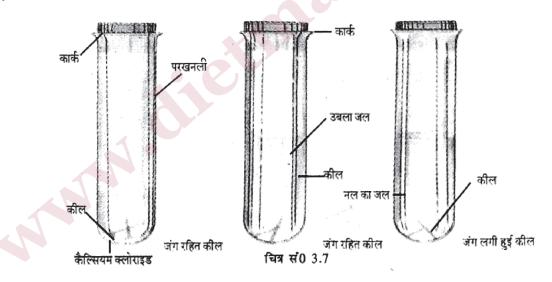
इस प्रकार अनेक प्रकार की रासायनिक क्रियाओं के आधार पर धातुओं की रासायनिक सिक्रयता की तुलना की जा सकती है। ऐसे तुलनात्मक अध्ययन के आधार पर धात्वीय तत्वों को एक सिक्रयता क्रम में व्यवस्थित किया गया है, जिसे विद्युत-रासायनिक श्रेणी कहते हैं। प्रमुख धातुओं की यह श्रेणी निम्नवत् हैं:

$$Li > K > Ba > Sr > Ca > Na > Mg > Al > Zn > Fe > Ni > Sn > Pb > H > Cu > Hg > Ag > Au$$

यह श्रेणी धातुओं की सिक्रयता के अवरोही क्रम (descending order) में है। इसका अर्थ है कि इस श्रेणी की कोई धातु अपने से पहले आने वाली धातु से, विस्थापित हो जाती है तथा अपने से बाद में आने वाली धातु को विस्थापित करती है।

विस्थापन की यह क्रियाएँ धातुओं के लवणों के विलयनों में होती है, जिनमें धातु धनात्मक आयन के रूप में उपस्थित रहती है। चूँिक ये रासायनिक अभिक्रियाएँ, धात्वीय आयनों की विद्युतीय प्रकृति (आवेश, विभव आदि) पर निर्भर करती है, इस श्रेणी को विद्युत रासायनिक श्रेणी कहते हैं।

(53)


[टिप्पणी: विद्युत रासायनिक श्रेणी के आधार पर धातुओं के अन्य गुणों की विवेचना इस स्तर पर संभव नहीं हैं]

चर्चा प्रश्न :

- लोहे में जंग क्यों लगता है?
- कौन-कौन सी परिस्थितियाँ हैं जिनके कारण लोहे में जंग लगता है?

धातुओं का संक्षारण

आपने देखा होगा कि लोहे की कील, पेंच, पाइप और रेलिंग यदि कुछ समय तक वायु में खुले पड़े रहें तो उनकी सतत पर लाल, भूरे रंग की परत जम जाती है। धातु की सतह पर उसका यौगिक बनकर धातु की एक-एक परत के रूप में उतरने से धातु का नष्ट होना संक्षारण कहलाता है। लोहे के संक्षारण को जंग लगना कहते हैं। लोहे पर भूरी परत परत (जंग) आयरन ऑक्साइड बनने के कारण होती है। इससे धातु धीरे-धीरे ऑक्साइड में परिवर्तित होकर नष्ट होती रहती है। इसी प्रकार एलुमिनियम की सतह पर एलुमिनियम ऑक्साइड की परत जम जाती है जिससे उसकी धात्विक चमक नष्ट हो जाती है।

क्रिया कलाप

तीन परखनली लें। प्रत्येक परखनली में दो या तीन लोहे की कील डाल दें। एक परखनली में थोड़ा सा कैल्सियम क्लोराइड लें। (कैल्सियम क्लोराइड वायु में उपस्थित नमी को अवशोषित करता है) दूसरी परखनली में उबला हुआ पानी (ऑक्सीजन विहीन जल) लें तथा तीसरे में साधारण नल का पानी

(54)

लें। तीनों परखनिलयों के मुख को कार्क द्वारा बन्द करके रख दें। चार-पाँच दिन बाद तीनों परखनिलयों का अवलोकन करें। क्या दिखाई देता है?

पहली तथा दूसरी परखनली की कीलों में जंग नहीं लगता है जबकि तीसरी परखनली की कीलों में जंग लग जाता है। इससे यह निष्कर्ष निकलता है कि जंग वायु (ऑक्सीजन) तथा नमी की उपस्थिति में लगता है।

लोहे तथा एल्यूमीनियम का संक्षारण वायुमण्डलीय ऑक्सीजन एवं नमी की उपस्थिति में ऑक्साइड बनने के कारण होता है।

चर्चा प्रश्न—

चाँदी एवं एलुमिनियम धातुओं में भी चमक कुछ समय बाद कम हो जाती है, क्यों?

चर्चा के पश्चात स्पष्ट करें—

ताँबे के बरतन पर हरे रंग की कॉपर कार्बोनेट की परत तथा चाँदी के ऊपर काले रंग की सिल्वर सल्फाइड की परत बनने के कारण इन धातुओं का संक्षारण होता है।

क्रिया कलाप

एल्यूमीनियम, ताँबा, लोहा तथा जस्ता का एक टुकड़ा लें। सभी टुकड़ों पर कुछ बूँदें तनु हाइड्रोक्लोरिक अम्ल डालें। क्या होता है? धातु की सतह पर झाग (बुलबुल) सा उठता दिखाई देता है।

अब धातु के टुकड़ों को जल से धोकर उसकी सतह को उसी स्थान पर छूकर देखें जहाँ आपने अम्ल की बूँद गिरायी थी। क्या देखते हैं? धातु की सतह खुरदुरी हो जाती है।

धातु अम्ल के साथ क्रिया करके लवण तथा हाइड्रोजन गैस बनते हैं। जैसे—एल्यूमीनियम धातु हाइड्रोक्लोरिक अम्ल के साथ क्रिया करे एलुमिनियम क्लोराइड तथा हाइड्रोजन गैस बनती है।

$$2Al + 6HCl
ightarrow 2AlCl_3 + 3H_2$$
 एलुमिनियम हाइड्रोक्लोरिक अम्ल एलुमिनियम क्लोराइड हाइड्रोजन गैस

अम्ल के साथ रासायनिक क्रिया के कारण भी धातुओं का संक्षारण होता है।

धातुओं को संक्षारण से कैसे बचाया जा सकता है?

धातुओं की संक्षारण द्वारा हानि से देश की अर्थव्यवस्था को बहुत हानि पहुँचती है। धातुओं को क्षरण से बचाने के लिए आवश्यक हैं कि धातु को नमी तथा हवा (ऑक्सीजन) से बचाया जाय। धातुओं को क्षरण से बचाने के लिए निम्नलिखित विधियों का उपयोग किया जाता है।—

(55)

(1) पेंट का लेप लगाकर—

धातु की वस्तुओं की सतह पर पेंट लगाकर उसे क्षरण से बचाया जा सकता है। इसी कारण स्टील के फनीर्चर, लोहे के पुल, रेल के डिब्बे, बस, ट्रक आदि को पेंट किया जाता है। हमारे घरों में भी लोहे और स्टील से बनी हुयी कई वस्तुओं पर पेन्ट किया जाता है ताकि वे जंग से सुरक्षित रहें।

(2) ग्रीस या तेल लगाकर :

तेल या ग्रीस की परत भी धातु का वायु और नमी से सम्पर्क समाप्त कर उसके संक्षारण को रोकती है। आपने देखा होगा कि नए औजारों जैसे—कैंची, चाकू पर ग्रीस या तेल लगाकर रखा जाता है ताकि उन पर जंग न लगे।

(3) गैल्वोनीकरण (धातु चढ़ाना) :

गैल्वोनीकरण कैसे किया जाता है? लोहा को जंग से बचाने के लिये लोहे की चादर या अन्य पात्र को पिघले हुए जस्ते में डुबा देते हैं, जिसके कारण लोहे पर जस्ते की एक पतली परत जम जाती है। इसे गैल्वोनीकरण कहते हैं। घरों की छते बनाने के लिए प्रयुक्त लोहे की चादरों, बाल्टियों और डुमों को संक्षारण से बचाने के लिए उनका गैल्वोनीकरण किया जाता है।

(4) विद्युत लेपन (इलेक्ट्रोप्लेटिंग) :

कुछ धातु जैसे क्रोमियम, निकिल तथा टिन वायुमंडल में उपस्थित ऑक्सीजन एवं नमी से प्रभावित नहीं होते हैं। लोहे का क्षरण रोकने के लिए उसके चारों ओर क्रोमियम या टिन की इलेक्ट्रोप्लेटिंग की जाती है। एल्यूमीनियम के ऊपर एल्यूमीनियम ऑक्साइड की परत जम जाने से उसकी चमक नष्ट हो जाती है किन्तु उसका क्षरण रुक जाता है। एल्यूमीनियम को क्षरण से बचाने के लिए उसके ऊपर एल्यूमीनियम ऑक्साइड का विद्युत लेपन कर दिया जाता है।

(5) मिश्र धातु बना कर :

कभी-कभी एक धातु में दूसरी धातु या अधातु मिलाने पर वह अधिक कठोर, स्थायी तथा संक्षारण से सुरक्षित हो जाती है। स्टेनलेस स्टील, लोहा तथा कार्बन का मिश्र धातु है जिसमें आसानी से जंग नहीं लगता।

मिश्र धातु

अनेक बार शुद्ध रूप में धातु को आवश्यक उद्देश्यों के लिए उपयोग में नहीं लाया जा सकता है। धातु में अन्य धातुओं अथवा अधातुओं की उचित मात्रा मिलाकर उसमें वांछित गुण-धर्म प्राप्त किये जा सकते हैं। ऐसे मिश्रण को मिश्र धातु कहते हैं अर्थात् मिश्र धातु दो या अधिक धातुओं या अधातु का समांगी मिश्रण है। दो या दो से अधिक धातुओं को पिघली हुई अवस्था में मिलाने पर मिश्र धातु प्राप्त होता है।

मिश्र धातु के भौतिक एवं धात्विक गुण अपने मूल धातु के गुणों से भिन्न एवं श्रेष्ठ होते हैं। स्थायित्व, चमक एवं श्रेष्ठ गुणों के कारण दैनिक जीवन में इनका अधिक उपयोग होता है। कुछ प्रचलित मिश्र धातुओं का संगठन इस प्रकार है।

चर्चा प्रश्न—

- स्टेनलेस स्टील में भी लोहा पाया जाता है परन्तु उसमें जंग नहीं लगता है क्यों?
- पीतल में कौन-कौन सी धातुएँ मिली होती हैं?

मिश्र धातु	अवयवी धातु	उपयोग
पीतल	ताँबा एवं जस्ता	बर्तन, तार, वाद्ययन्त्र, सजावट की वस्तुएँ बनाने में।
काँसा	ताँबा एवं टिन	सिक्का, घण्टा, मेडल तथा गहने बनाने में।
सोल्डर	सीसा एवं टिन	विद्युत परिपथों में टाँका लगाने में।
स्टेनलेस स्टील	लोहा, क्रोमियम एवं निकिल	बर्तन, उपकरण, छूरी, काँटे बनाने में।

मिश्र धातु के विशिष्ट गुण

- (1) मिश्र धातु प्रायः मूल धातु से कठोर होती हैं। शुद्ध सोना बहुत मुलायम होता है, इसिलए इससे आभूषण नहीं बनाया जा सकता सोने में थोड़ा ताँबा (कॉपर) मिलाने पर यह कठोर एवं आभूषण बनाने के लिए उपयोगी हो जाता है।
- (2) मिश्र धातुओं का वायु तथा नमी के कारण क्षरण नहीं होता है। लोहे में क्रोमियम मिलाने पर स्टेनलेस स्टील प्राप्त होता है जिसमें जंग नहीं लगता।
- (3) मिश्र धातुओं का रासायनिक यौगिकों द्वारा क्षरण नहीं होता है।
- (4) मिश्र धातुओं के गुण उनके अवयवी धातुओं के गुणों से भिन्न होते हैं, जैसे—सोल्डर, सीसा तथा टिन का मिश्र धातु है। सोल्डर का गलनांक सीसा तथा टिन दोनों के गलनांक से कम होता है। इसी कारण इसका उपयोग धातुओं के टुकड़ों अथवा तारों को जोड़ने में किया जाता है।

आओ जानें—

क्र.सं.	मिश्र-धातु (Alloy)	संघटन (Composition)	उपयोग (Uses)	
1.	रोल्ड गोल्ड (कृत्रिम गोल्ड)	90%-Cu व 10%-Al	आभूषण तथा मूर्तियों बनाने में	
2.	सिलिका ब्रान्ज (Silica	97%-Cu, 2%-Sn व 1%-	टेलीफोन तथा टेलीग्राफ के तार आदि	
	bronze)	Si	बनाने में बर्तन आदि बनाने में।	
4.	बेल मेटल (Bellmetal)	80%-Cu व 20%-Sn	घंटे, पुर्जे आदि।	
5.	बेरीलियम ब्रान्ज	20%- बेरियम व 98-कॉपर	स्प्रिंग, पेन तथा पेन्सिल क्लिप, ब्लेड	
	(Berillium bronze)		आदि बनाने में।	
6.	डच मेटल (Dutch metal)	80%-Cu व 20%-Zn	मशीनों के पुर्जे बनाने में।	
7.	मोनल मेटल (Monel	28%-Cu, 2%-Fe व 70%-	मूर्तियाँ बनाने में।	
	metal)	Ni		
8.	कान्सटैन्टन (Constantan)	60%-Cu व 40%-Ni	तार बनाने में।	
9.	फॉस्फर ब्रान्ज (Phosphor	85%-Cu, 13%-Sn, 2%-P	रेडियो में ऐरियल तथा पुर्जे बनाने में।	
	bronze)			
10.	मुद्रा धातु (Coinage	95%-Cu, 4% Sn, 1%-P	मुद्राएँ बनाने में।	
	metal)			
11.	पीतल Brass या Alpha)		घरेलू बर्तनों, मशीनों कारतूसों आदि के	
		40% जिंक	बनाने में।	
12.	काँसा (Bronze)		सिक्कों, बर्तनों, घंटे तथा घंटियों, जहाज	
		है।	के नोदक आदि बनाने में।	

धातुओं का घरेलू एवं औद्योगिक उपयोग

दैनिक जीवन में अनेक उद्देश्यों के लिए धातुओं का उपयोग होता है। वाहनों, हवाई जहाजों, रेलगाड़ियों, उपग्रहों, औद्योगिक उपकरणों आदि को बनाने में अत्यधिक मात्रा में धातुएँ प्रयुक्त होती हैं। लोहा सबसे अधिक उपयोग में आने वाली धातु है। यह जहाँ एक ओर पिन, कील आदि छोटी वस्तुएँ बनाने के लिए उपयोग की जाती हैं वहीं दूसरी ओर भारी उपकरणों के निर्माण में भी इसका उपयोग किया जाता है। एल्यूमीनियम भी एक अन्य अत्यधिक उपयोग में आने वाली धातु है इसका उपयोग अधिकांश घरेलू बर्तनों को बनाने के लिए किया जाता है।

धातुएँ ऊष्मा की सुचालक होती है अतः उनका बर्तन और बॉयलर बनाने के लिए उपयोग किया जाता है। इस कार्य के लिए लोहा, कॉपर तथा एल्यूमीनियम का उपयोग किया जाता है। ताँबे का सबसे महत्वपूर्ण उपयोग विद्युत उपकरण बनाने में किया जाता है। आजकल विद्युत केबल बनाने के लिए एल्यूमीनियम के तारों का भी उपयोग होने लगा है।

सोने और चाँदी का उपयोग आभूषण बनाने के लिए होता है। सोना और चाँदी सबसे अधिक आघातवर्ध्य है। इसलिए इनकी पतली चादरें बनायी जा सकती है। आपने चाँदी की पतली चादरें बनायी जा सकती हैं। आपने चाँदी की पतली पत्नियों को मिठाइयों को सजाने के लिए उपयोग करते देखा होगा। खाने की वस्तुएँ, दवाइयाँ, चॉकलेट एवं सिगरेट की पैकिंग के लिए एल्यूमीनियम की पत्नियों का उपयोग किया जाता है।

उपर्युक्त के आधार पर अधोलिखित तालिका में दिये गये धातु के नाम के आगे उनके कुछ उपयोग लिखें—

क्र. सं.	धातु का नाम	धातु के उपयोग
1.	लोहा	अलमारी, फावड़ा आदि बनाने में
2.	एलुमिनियम	
3.	ताँबा	
4.	काँसा	
5.	चाँदी	

स्मरणीय तथ्य

- धातु प्रकृति में जिस रूप में पायी जाती हैं, उन्हें खिनज कहते हैं।
- अयस्कों से धातु के निष्कर्षण की विधि धातुकर्म कहलाती है।
- अयस्क से धातुओं को प्राप्त करना अयस्क की प्रकृति तथा धातुओं के भौतिक और रासायिनक गुणों पर निर्भर करता है।
- धातुओं के निष्कर्षण के विभिन्न पद हैं—अयस्क का पीसकर सान्द्रण, निस्तापन, (भर्जन)
 प्रगलन व धातुओं का शोधन।
- मिट्टी, रेत आदि को अयस्क से दूर करने को सान्द्रण कहते हैं।
- अयस्क में प्रायः मिट्टी बालू, चूना तथा पत्थर आदि अशुद्धियों के रूप में मिले रहते हैं।
- सल्फाइड अयस्कों का सान्द्रण फेन प्लवन विधि द्वारा किया जाता है।

(59)

- सान्द्रित अयस्क को वायु की अनुपस्थिति में उच्च ताप पर गर्म करते हैं, जिससे अयस्क का अपघटन हो जाता है। यह निस्तापन की क्रिया है।
- भर्जन के सान्द्रित अयस्क को अकेले या अन्य पदार्थों के साथ मिलाकर वायु की नियन्त्रित
 मात्रा में गर्म करना भर्जन है।
- प्रगलन अयस्क में उचित गालक तथा कोक मिलाकर मिश्रण को उच्च ताप पर गलाने की क्रिया प्रगलन कहलाती है।
- धातुओं के निष्कर्षण में विभिन्न प्रकार की भिट्ठयों का उपयोग किया जाता है, जिनमें परावर्तनी
 भट्ठी, वात्या भट्ठी, बेसेमर परिवर्तक भिट्ठयाँ प्रमुख हैं।
- कॉपर पाइराइट कॉपर का मुख्य अयस्क है।
- दो या दो से अधिक धातुओं को एक निश्चित अनुपात में मिलाकर पिघलाया जाता है तो ये धातुएँ परस्पर मिल जाती हैं तथा एक समांग मिश्रण बनाती हैं, जिसे मिश्र-धातु (Alloy) कहते हैं।

शब्दावली

अयस्क	One	धातु चढ़ाना	Galvanize
अधात्विक	Non metallic	निस्तापन	Calcination
उपधातु	Metalloid	प्रगलन	Smelting
भर्जन	Roasting	भंगुर	Brittle
तन्यता	Ductility	मिश्र धातु	Alloy
धातुमल	Slag	मिश्र धातु	Alloy
धात्विक	Metallic	विद्युत लेपन	Electroplating
धातुकर्म	Metallurgy	संक्षारण	Corossion
आघातवर्धता	Malleability	संकर धातु	Mixed metal

मूल्यांकन प्रश्न

अतिलघु उत्तरीय प्रश्न

निम्नलिखित प्रश्नों में सही विकल्प छाँटकर अपनी अभ्यास पुस्तिका में लिखिए—
 (क) निम्नलिखित वस्तुओं में कौन सी वस्तु संक्षारित हो सकती है—

(60)

		(i) लकड़ी की मेज	
		(ii) स्टील की कुर्सी	
		(iii) खुली स्थानों पर रखी लोहे की छड़	
		(iv) तेल लेपित लोहे की छड़	
	(ख)	बॉक्साइट किसका अयस्क है?	
		(i) सोडियम (ii) लोहा	
		(iii) एलुमिनियम (iv) कॉपर	
	(ग)	इनमें से कौन सी सान्द्रण की विधि नहीं है?	
		(i) फेन प्लवन विधि (ii) चुम्बकीय पृथक्करण	
		(iii) निस्तापन (iv) गुरुत्वीय पृथक्करण	
2.		स्थानों की पूर्ति कीजिए—	
	(क)	सोडियम धातु को में रखते हैं।	
	(평)	जंग लगने के लिए तथा आवश्यक है।	
	(ग)	धातु से तार बनाने का गुण कहलाता है।	
	(ঘ)	जिन खनिजों से धातु का निष्कर्षण किया जाता है उन्हें कहते हैं।	
	(ङ)	का निर्माण पौधों एवं जन्तुओं के अपघटन से होता है।	
3.	निम्नि	लेखित कथनों में सही कथन के आगे सही (🗸) तथा गलत कथन के आगे गलत (×)	का
	चिन्ह	लगाइए—	
	(ক)	हीरा कार्बन का रूप है।)
	(碅)	हेमेटाइट एलुमिनियम का अयस्क है। ()
	(ग)	धातु ऑक्सीजन से अभिक्रिया करके धातु ऑक्साइड बनाते हैं। ()
	(घ)	क्वार्ट्ज धात्विक खनिज है। ()
	(량)	संगमरमर चूने के पत्थर से बनता है। ()
	(핍)	निस्तापन की क्रिया में अयस्क को वायु की उपस्थिति में गरम किया जाता है।()

 ${f 4}.$ कॉलम ${f A}$ के शब्दों का कॉलम ${f B}$ के शब्दों से सही मिलान कीजिए ${f -}$

कॉलम-A कॉलम-B

बॉक्साइट आयरन (लोहा)

गैलेना लेड (सीसा)

हेमेटाइट एलुमिनियम

पाइरोल्साइट मैंगनीज

लघु उत्तरीय प्रश्न

- 5. निम्नलिखित प्रश्नों का संक्षिप्त उत्तर दीजिए—
 - (क) खनिज तथा अयस्क में क्या अन्तर है?
 - (ख) धातुकर्म से क्या समझते हैं?
 - (ग) धातुओं की आघातवर्धनीयता तथा तन्यता के गुण का क्या अर्थ है?
 - (घ) धात्ओं का संक्षारण क्या है?
 - (ङ) मुक्त अवस्था में पाए जाने वाले किन्हीं दो धातुओं के नाम लिखिए।
 - (च) मिश्र धात् क्या होती है?
 - (छ) अयस्कों का सान्द्रण क्यों किया जाता है?
 - (ज) किसी एक द्रव धातु का नाम लिखिए।

दीर्घ उत्तरीय प्रश्न

- 6. निम्नलिखित प्रश्नों का उत्तर दीजिए :
 - (क) धातुओं की ऑक्सीजन से अभिक्रिया को उदाहरण सहित स्पष्ट कीजिए।
 - (ख) सान्द्रण की विभिन्न विधियों का सचित्र वर्णन कीजिए।
 - (ग) धातुओं के शोधन से क्या समझते हैं? शोधन की विधि का सचित्र वर्णन कीजिए।
 - घ) धात्ओं की जल के साथ अभिक्रिया को दो उदाहरण द्वारा स्पष्ट कीजिए।
 - (ङ) सोडियम धातु का जल तथा ऑक्सीजन से क्रिया का रासायनिक समीकरण लिखिए।
 - (च) भर्जन तथा निस्तापन में अन्तर स्पष्ट कीजिए।
 - (छ) धातु के संक्षारण की रोकथाम के लिये अपनायी जाने वाली विभिन्न विधियों का वर्णन कीजिए।
 - (ज) तवे की हैण्डिल में लकड़ी लगा होता है, क्यों।
 - (इा) धातुओं के प्रमुख उपयोग लिखिए।

(62)

- निम्नलिखित प्रश्नों में चार-चार पद है। प्रत्येक प्रश्न में तीन पद किसी न किसी रूप में एक से हैं और एक पद अन्य तीनों से भिन्न है। अन्य से भिन्न पद की पहचान कर अभ्यास प्रस्तिका में लिखिए :
- WWW. dietinathura. (क) पीतल, कॉसा, स्टेनलेस स्टील, लोहा

इकाई-3

आवर्त्तसारणी की सामान्य जानकारी : विद्युत ऋणात्मकता

इस इकाई का अध्ययन करने के उपरान्त प्रशिक्षुओं को निम्नवत् विषय-वस्तु की जानकारी होगी—

- तत्वों का वर्गीकरण
- मेण्डलीफ का आवर्त नियम
- मेण्डलीफ की संशोधित आवर्तसारणी
- मेण्डलीफ की (संशोधित) आवर्तसारणी के लक्षण
- तत्वों की आधुनिक आवर्तसारणी
- आवर्तसारणी में विभिन्न वर्गों एवं आवर्तों में पाए जाने वाले तत्वों की विशेषताएँ
- विद्युत ऋणात्मकता

प्रशिक्षणार्थियों से चर्चा करें—

- तत्वों को किस प्रकार एवं किस आधार पर वर्गीकृत किया गया है?
- मेण्डलीफ का आवर्त नियम क्या है?

प्रशिक्षुओं से प्राप्त उत्तरों के आधार पर स्पष्ट करें कि

रसायनज्ञों का बहुत समय एवं प्रयास तत्वों के वर्गीकरण एवं उनके क्रमायोजन की व्यवस्था की खोज में लगा, जो तत्वों के गुणों की समानताओं पर आधारित हो तथा उनके सुव्यवस्थित अध्ययन में सहायक हो। खोज का अंतिम परिणाम आधुनिक आवर्त-निमय (modern periodic law) है, जो निम्नवत् है—

''तत्वों के रासायनिक गुण उनके परमाणु-क्रमांकों के आवर्ती-फलन होते हैं। (Chemical properties of elements are periodic functions of their atomic numbers).

अर्थात् यदि तत्वों को परमाणु-क्रमांकों के क्रम में व्यवस्थित किया जाय तो निश्चित अन्तरालों पर रखे गये तत्वों के गुणों में समानता पायी जाती है।

उपर्युक्त नियम के पहले, तत्वों के वर्गीकरण हेतु, प्रतिपादित प्रमुख नियम निम्नवत् थे—

1. डोबरनियर का त्रिक्-नियम (Dobenier's Law of Triads)—सन् 1829 ई. में जर्मन वैज्ञानिक डोबरनियर ने तीन ऐसे तत्वों के कुछ समूहों को प्रस्तुत किया जिनके गुण परस्पर समान थे।

(64)

इस नियम के अनुसार, ''यदि समान गुण वाले तीन तत्वों को उनके परमाणु भार के बढ़ते हुए क्रम में रखा जाये तो बीच वाले तत्व का परमाणु भार अन्य दो तत्वों के परमाणु-भातें का लगभग माध्य (mean) होता है।''

सारणी 1

	पहले व तीसरे तत्व के परमाणु भार का माध्य
1. Li Na K 7 23 39	$\frac{7+39}{2} = 23 \text{ (Na)}$
2. Cl Br I 35.5 80 127	$\frac{35.5 + 127}{2} = 81.183 \text{ (Br)}$
3. Ca Sr Ba 40 86.6 137	$\frac{40+137}{2} = 88.5 \text{ (Sr)}$

जिनके गुणों की तीव्रता बढ़ते हुए परमाणु भार के साथ घटती थी तथा बीच के तत्व का परमाणु भार अन्य दो के परमाणु भार के समान्तर माध्य के लगभग बराबर था। इन समूहों को डोबरिनयर के त्रिक् (Dobernier's triads) कहा जाता है।

यह नियम केवल कुछ ही तत्वों के समूहों तक सीमित रहा।

चर्चा करें—

तत्वों के वर्गीकरण में न्यूलैण्ड का अष्टम नियम क्या है?

चर्चा के पश्चात् स्पष्ट करें—

2. न्यूलैण्ड का अष्टक नियम (Newland's Law of Octaves)—तत्वों के इस वर्गीकरण का विकास सन् 1863-65 ई. में जॉन न्यूलैण्ड ने किया। उसने ज्ञात तत्वों को, उनकेपरमाणु भारों के क्रम में व्यवस्थित करने पर देखा कि अनेक स्थितियों में प्रत्येक आठवें तत्व के रासायिनक गुणों में पुनरावृत्ति होती है, अर्थात् जब तत्वों को उनके परमाणु भारों के बढ़ते क्रम में रखा जाय तो प्रत्येक आठवें तत्व के सामान्य गुण पहले तत्व के गुणों के समान होते हैं। इसे न्यूलैण्ड का अष्टक नियम कहते हैं।

तत्वों को परमाणु-भारों में रखने पर प्रत्येक तत्व के गुणों की पुनरावृत्ति उसके आठवें तत्व में होती है। तत्वों के अष्टक का उदाहरण निम्नवत् है—

सारणी-2 : तत्वों के अष्टक

क्रम सं.	तत्व	क्रम सं.	तत्व	क्र.सं.	तत्व
1.	हाइड्रोजन (H)	8.	फ्लोरीन (F)	15.	क्लोरीन (Cl)
2.	लीथियम (Li)	9.	सोडियम (Na)	16.	पोटैशिमय (K)
3.	बेरीलियम (Be)	10.	मैग्नीशियम (Mg)	17.	कैल्शियम (Ca)
4.	बोरॉन (B)	11.	ऐलुमिनियम (Al)	18.	क्रोमियम (Cr)
5.	कार्बन (C)	12.	सिलिकॉन (Si)	19.	टाइटेनियम (Ti)
6.	नाइट्रोजन (N)	13.	फॉस्फोरस (P)	20.	मैगनीज (Mn)
7.	ऑक्सीजन (O)	14.	सल्फर (S)	21.	आयरन (Fe)

उपर्युक्त सारणी में (i) हाइड्रोजन, फ्लोरीन तथा क्लोरीन, (ii) लीथियम, सोडियम तथा पोटैशियम, (iii) बेरीलियम, मैग्नीशियम तथा कैल्शियम, (iv) बोरॉन, ऐलुमिनियम तथा क्रोमियम में काफी समानता पायी जाती है। परन्तु क्रम सं. 18 के बाद के तत्वों में उतनी समानता नहीं मिलती। उदाहरणतः मैगनीज के गुण नाइट्रोजन एवं फॉस्फोरस में तथा आयरन के गुण ऑक्सीजन एवं सल्फर से नहीं मिलते। अतः यह नियम क्रम संख्या 18 के बाद समुचित रूप से लागू नहीं होता अर्थात् इसकी वैधता केवल कम परमाणु भारों के तत्वों तक ही सीमित थी।

चर्चा करें—

• मेण्डलीफ की आवर्त-सारणी में तत्वों को किस आधार पर रखा गया है?

चर्चा के पश्चात् प्रशिक्षणार्थियों को मेण्डलीफ के आवर्त्त नियम के विषय में बताएँ।

मेण्डलीफ का आवर्त्त नियम (Mendeleeff's Periodic Law)

वर्ष 1869 ई. में रूसी वैज्ञानिक सर डी.आई. मेण्डलीफ (Dimitri Ivanovitch Mendeleeff's) ने एक आवर्त-नियम का प्रतिपादन किया। इस नियम के अनुसार, तत्वों के भौतिक तथा रासायनिक गुण उनके परमाणु भारों के आवर्ती फलन (periodic function of atomic weights) होते हैं। अर्थात् यदि तत्वों को बढ़ते हुए परमाणु भारों के क्रम में व्यवस्थित किया जाय तो निश्चित एवं समान अन्तरालों के बाद लगभग समान गुण वाले तत्व पाये जाते हैं।

इन नियम के अनुसार, मेण्डलीफ ने तत्वों को एक सारणी में इस प्रकार रखा कि सारणी के स्तम्भों में ऊपर से नीचे की ओर समान गुणधर्म वाले तत्व व्यवस्थित हों तथा क्रमिक रूप से परिवर्तित होते हुए गुणों के तत्व सारणी की श्रेणियों में बायीं से दाहिनी ओर रखे जायँ। इसे मेण्डलीफ की आवर्त-सारणी (Mendeleeff's periodic table) कहते हैं।

मेण्डलीफ की आवर्त-सारणी (Mendeleeff's Periodic Table)—सारणी बनाते समय मेण्डलीफ ने परमाणु-भारों के क्रम की अपेक्षा इस बात पर अधिक बल दिया कि समान गुणधर्म वाले तत्व एक ही वर्ग (group) अथवा स्तम्भ (column) में स्थित हों। इस कारण चार स्थानों पर अधिक परमाणु भार वाले तत्व, कम परमाणु भार के तत्व से पहले आते हैं। अनेक स्थानों पर सारणी में रिक्त स्थान भी छूट गये, जिनकी पूर्ति नवीन तत्वों की खोज होने पर बाद में हुई।

सारणी-3 : मेण्डलीफ की आवर्त-सारणी वर्ष (1871)

_	I			I	I	I		
श्रेणी	वर्ग (Group) I	वर्ग II	वर्ग	वर्ग IV	वर्ग V	वर्ग VI	वर्ग	वर्ग VIII
(Series)			Ш				VII	
1.	H-1		_	_	_			_
2.	Li-7	Bee-9	B-11	C-12	N-14	O-16	F-19	_
3.	Na-23	Mg-24	A1-27	Si-28	P-31	S-32	C1-	_
				6			35.5	
4.	K-39	Ca-40	?-44	Ti-58	V-51	Cr-52	Mn-55	Fe-56 C-59 Ni-59
5.	Cu-63	Zn-65	?-68	?-72	As-75	Se-78	Br-80	
6.	Rb-85	Sr-87	Y-88	Zr-90	Nb-94	Mo-96	?-100	Ra-194 Rb-104 Pd-
								106
7.	Ag-108	Cd-	In-113	Sn-	Sb-	Te-	I-127	
	10	112		118	112	128		
8.	Cs-133	Ba-	Di-	Ce-	_		_	_
		137	138	140				
9.							_	_
10.	_		Er-	La-	Ta-	W-		Os-195
			178	180	182	184		
11.	Au-199	Hg-	Ti-	Pb-	Bi-			_
		200	204	207	208			
12.	_		_	Th-		U-240		_
				231				

मेण्डलीफ की संशोधित आवर्त सारणी

1871 ई. के बाद नवीन तत्वों की खोज से मेण्डलीफ की प्रारम्भिक आवर्त-सारणी (सारणी-3) के रिक्त स्थान भर गये।

1913 ई. में मेण्डलीफ की आवर्त सारणी का संशोधित स्वरूप प्रस्तुत किया गया (देखें सारणी-4)।

यदि इस सारणी का अध्ययन मेण्डलीफ के, परमाणु-भारों के क्रम पर आधारित, नियम के अन्तर्गत किया जाय तो इसमें निम्नलिखित दोष पाये जाते हैं—

[सारणी-4 में तत्वों के प्रतीक के दाहिनी ओर परमाणु-क्रमांक तथा नीचे परमाणु-भार लिखे गये हैं]

मेण्डलीफ की आवर्त-सारणी के प्रमुख दोष

मेण्डलीफ की आवर्त सारणी के प्रमुख दोष निम्नलिखित हैं—

- 1. तत्वों का क्रम बढ़ते परमाणु-भार के अनुसार न होना—मेण्डलीफ की आवर्त-सारणी में तत्वों के ऐसे चार युग्म (pairs) हैं जिनमें अधिक परमाणु भार का तत्व, कम परमाणु भार के तत्व से पहले रखा गया है। ये युग्म हैं—
 - (i) आर्गन (Ar)—39.4 तथा पोटैशियम (K)—39.1
 - (ii) कोबाल्ट (Co)—58.94 तथा निकिल (Ni)—58.96
 - (iii) टेलूरियम (Te)—127.61 तथा आयोडीन (I)—126.91
 - (iv) थोरियम (Th)—232.12 तथा प्रोटोएक्टीनियम (Pa)—231
- 2. समस्थानिकों का स्थान—अनेक तत्वों के एक से अधिक समस्थानिक पाये जाते हैं जिनके परमाणु भार तो भिन्न होते हैं, परन्तु रासायनिक गुण समान, जैसे हाइड्रोजन के तीन समस्थानिक H-1, H-2, H-3 क्लोरीन के दो समस्थानिक Cl-35, Cl-37, कार्बन के दो समस्थानिक C-12, C-14 आदि। परमाणु-भार के आधार पर क्रमायोजित करने से इन समस्थानिकों को भी सारणी में पृथक स्थान मिलना चाहिए परन्तु मेण्डलीफ की आवर्त-सारणी में ऐसा सम्भव नहीं था।
- 3. हाइड्रोजन का द्वैध व्यवहार—हाइड्रोजन; जो कि प्रथम वर्ग A की धातुओं (Li, Na, K...) और सप्तम वर्ग A के तत्वों (F, Cl, Br, I) के गुणों से समानता रखता है को निश्चित स्थान नहीं दिया जा सकता है।

IA	VII
H	H
Li	F
Na	C1
K	Br
Rb	I
Cs	At
Fr	

- 4. असमान तत्वों को एक ही वर्ग में रखना—प्रथम समूह A के क्षारीय धातु और B के मुद्रा-धातु व सप्तम वर्ग A के हैलोजन और B के Mn धातु में काफी असमानता होते हुए भी वे एक साथ रखे गये हैं।
- 5. अक्रिय गैसों (जैसे—हीलियम, निऑन, ऑर्गन आदि को सारणी में कोई स्थान नहीं दिया गया था।

मेण्डलीफ की आवर्त सारणी में संशोधन

वैज्ञानिक **मोजले** (Mosley) ने X-विकिरणों के स्पेक्ट्रमों के अध्ययन के द्वारा तत्वों के एक नवीन लक्षण, **परमाणु-क्रमांक (Atomic Number)** का प्रतिपादन किया।

किसी तत्व के परमाणु के नाभिक में प्रोटॉनों की संख्या अथवा नाभिक के धनावेश (मूल-आवेश, e, के पदों में) को तत्व का परमाणु-क्रमांक कहते हैं। वैज्ञानिकों ने यह पाया कि यदि तत्वों को उनके परमाणु-क्रमांकों के बढ़ते क्रम में व्यवस्थित किया जाय, तो मेण्डलीफ की प्रारम्भिक आवर्त-सारणी के अनेक दोष दूर हो जाते हैं। इस आधार पर मेण्डलीफ द्वारा प्रतिपादित आवर्त नियम में संशोधन करके आधुनिक आवर्त नियम निम्नवत् प्रस्तुत किया गया—

"तत्वों के भौतिक एवं रासायनिक गुण उनके परमाणु-क्रमांकों के आवर्ती फलन होते हैं।"

इस नियम के आधार पर मेण्डलीफ की आवर्त सारणी में संशोधन किया गया। इसके अतिरिक्त सारणी में अक्रिय गैसों का एक नया वर्ग (शून्य वर्ग) जोड़ा गया तथा दुर्लभ मृदा तत्वों (Rare earths) एवं एक्टिनाइड तत्वों के स्थान निर्धारित किये गये।

किसी तत्व के सभी समस्थानिकों का परमाणु-क्रमांक समान होने के कारण उनके स्थान निर्धारण की त्रुटि स्वतः ही दूर हो गयी।

-	4	सारणी-4	: मेण्डली	सारणी-4 : मेण्डलीफ की संशोधित आवर्त-सारणी (वर्ष 1913)	धित आवर्त	-सारणी (इ	र्षि 1913)		
वर्ग स्वर्ग	I	n = 4	B 4	2	> a	15 ¥	IIA A	ШЛ	Zero
आवर्त-1 (लघु)	HI 1.0080	c			c c				He 2 4.003
आवर्त-2 (लघु)	LI 3 6.940	Be 4 9.012	B 5 10.82	C6 12.011	N 7 14.007	0.8 16.00	F9 18.998		Ne 10 20.18
आवर्त-3 (लघु)	Na 11 22.991	Mg 12 24-32	Al 13 26.98	Si 14 28.09	P 15 30.975	S 16 32.066	CI 17 35.453		Ar 18 39.94
आवर्त-4 (दीर्घ)	K 19 39.102	Ca 20	Sc 21 44.96	Ti 22	V 23	Cr 24 52.01	Mn 25	Fe (26) Co (27) Ni (28) 55.85, 58.94 58.71	Kr 36 83.80
	Ca 29 63.54	Zn 30 65-38	Ga 31 69.72	Ge 32 72.60	As 33 74.91	28.96	Br 35 79.916		
आवर्त-5 (दीर्घ)	Rb 37 85-48	Sr.38 87.63	Y 39 88.92	Zr 40 91.22	Nb 41 92.91	Mo 42 95.95	Tc 43	Ru (44) Rh (45) Pd (46) Xe 54 101.1, 102.91 106.4	Xe 54 131.30
	Ag 47 107.880	Cd 48 In 49	~	Sa 50 111.70	Sb 51 128.76	Te 52 127.61	153 126.90	,	
आवर्त-6 (त्रीर्य)	Cs 55 132.91	Ba 56 137.36	La 57* 138.92	Hf72 178.50	77.aT 180.95	W 74 183.86	Re 75 186.22	0s (76) Ir (77) Pt (78) 1902, 1922, 195.09	Rn 86 222
	Au 79 197.0	Hg 80 TT 81 200.61 204.3	TT 81 204.39	Pb 82 207.21	Bi 83 209.00	Po 84 210	At 85 210		
आवर्त-7	Fr 87 223	Rg 88 226.05	Ac 89† 227			. 4			
	लैन्येनाइड श्रो	复	Ce 58 140.13	Pr 59 140.92	Nd 60 , 144.27	Pm 61 145	Sm 62 150.35	Eu 63 152	Gd 64 157.26
	-		Tb 66 158.93	Dy 66 162.51	He 67 164.94	Er 68 167.27	Tim 69 163.94	Y6 70 173.04	La 71 174.99
	एक्टिनाइड श्रे	श्रेगी	Th 90 232.05	Pa 91 231	U 92 238.07	Np 93 237	Pu 94 244	Am 95 243	Cm % 245
			Bk 97 249	Cf 98 251	Es 99 254	Fin 100 253	Md 101 256	No 162 ,253	Lw 163 257

[तत्त्वों के प्रतीकों के आगे परमाणु क्रमांक तथा नीचे परमाणु-भार अंकित है।] *लैन्थेनाइड श्रेणी के तत्त्व परमाणु क्रमांक 58 से 71 तक ¹एक्टिनाइड श्रेणी के तत्त्व परमाणु क्रमांक 90 से 103 तक

(70)

प्रशिक्षुओं से चर्चा करें-

- आवर्त एवं वर्ग में क्या अन्तर है?
- संक्रमण-तत्व आवर्त-सारणी में किन आवर्तीं में स्थित हैं?
- मेण्डलीफ की संशोधित आवर्त-सारणी क्या है?

चर्चा में प्रशिक्षुओं से प्राप्त विचारों के आधार पर मेण्डलीफ की (संशोधित) आवर्त-सारणी को समझाएँ—

मेण्डलीफ की (संशोधित) आवर्त सारणी के लक्षण (Characteristics of Mendeleff's (Amended) Periodic Table)

मेण्डलीफ की आवर्त-सारणी को सात श्रेणियों (series) में जिनकी **आवर्त** (period) कहते हैं तथा नौ स्तम्भों (column) में जिन्हें **वर्ग** अथवा समूह (groups) कहते हैं, विभाजित किया गया है।

(i) आवर्त की विशेषताएँ

- 1. आवर्त सारणी में आवर्तों की क्रम संख्या एक से सात तक होती है।
- 2. पहले आवर्त में केवल दो तत्व हैं इसलिए इसे अतिलघु आवर्त कहते हैं तथा इसमें सिर्फ हाइड्रोजन तथा हीलियम हैं।
- 3. आवर्त दो व तीन में आठ-आठ तत्व हैं तथा इनको लघु आवर्त कहते हैं। तीसरे आवर्त के तत्वों (Na, Mg, Al, Si, P, S, Cl) को प्रारूपी तत्व (typical elements) कहते हैं।
- 4. चौथे और पाँचवें आवर्त में 18-18 तत्व हैं इसिलए इनको **दीर्घ आवर्त** (long period) कहते हैं।
- 5. छठे तथा सातवें आवर्त में 32-32 तत्व हो सकते हैं—अतः इन्हें अतिदीर्घ आवर्त (Very long period) कहते हैं। छठें आवर्त में 32 तत्व हैं, परन्तु सातवें आवर्त में अभी तक केवल 15 तत्व ज्ञात किये जा सके हैं अर्थात् यह अपूर्ण आवर्त है।
- 6. प्रत्येक दीर्घ आवर्त में प्रथम आठ तत्वों को सामान्य तत्व (normal elements) तथा शेष दस तत्वों को संक्रमण तत्व (transition elements) कहते हैं।
- 7. अतिदीर्घ छठवें और सातवें आवर्त में आठ सामान्य तत्व, 10 संक्रमण तत्व तथा 14 अन्तः संक्रमण तत्व हैं। छठवीं आवर्त के अन्तः संक्रमण तथा लैन्थेनाइड तथा सातवीं आवर्त के अन्तः संक्रमण तत्व एक्टिनाइड कहलाते हैं। इन्हें मुख्य सारणी के नीचे अलग दिखाया जाता है।

- 8. प्रत्येक आवर्त किसी क्षार धातु (Li, Na, K) से आरम्भ होकर किसी अक्रिय गैस, जैसे— हीलियम, नियाँन, ऑर्गन आदि पर समाप्त हो जाता है।
- 9. प्रत्येक आवर्त में तत्वों के भौतिक तथा रासायनिक गुणधर्मीं, जैसे—धात्वीय प्रकृति, घनत्व, क्वथनांक, गलनांक और ऑक्साइड की प्रकृति में नियमित परिवर्तन (gradation) होता है।
- 10. द्वितीय आवर्त के पहले तीन तत्व (लिथियम, बेरीलियम तथा बोरॉन) तीसरे आवर्त के तत्वों तथा अगले वर्ग के दूसरे तत्व के साथ विकर्ण समानता प्रदर्शित करते हैं। इस कारण इनके गुण समान होते हैं, जैसे—लिथियम मैग्नीशियम के साथ, बेरीलियम ऐलुमिनियम के साथ तथा बोरॉन सिलिकॉन के साथ विकर्ण समानता प्रदर्शित करता है।

समूह I II III IV आवर्त-II Li Be B C आवर्त-III Na Mg Al Si

- 11. तत्वों का आवर्त में विद्युत् धनात्मक गुण परमाणु क्रमांक की वृद्धि के साथ-साथ घटता है।

 Na
 Mg
 Al
 Si
 P
 S
 Cl

 विद्युत धनात्मक
 विद्युत् उदासीन
 विद्युत् ऋणात्मक
- 12. धात्वीय
 गुण—आवर्त
 में
 धात्वीय
 गुण परमाणु-क्रमांक
 की वृद्धि के साथ-साथ घटता है।

 Na
 Mg
 Al
 Si
 P
 S
 Cl

 अधिक धात्वीय
 कम धात्वीय या अधातु
- 13. संयोजकता—(हाइड्रोजन के अनुसार) हाइड्रोजन के अनुसार, तत्वों की संयोजकता पहले वर्ग 1 से 4 तक बढ़ती है और उसके उपरान्त 4 से 1 तक घटती है।

तत्व के हाइड्रोजन यौगिक LiH BeH_2 BH_3 CH_4 NH_3 H_2O HF संयोजकता 1 2 3 4 3 2 1

संयोजकता—(ऑक्सीजन के अनुसार) ऑक्सीजन के अनुसार, संयोजकता वर्ग एक से आठ तक लगातार बढ़ती है।

तत्व के ऑक्सीजन यौगिक Na_2O BeO B_2O_3 CO_2 N_2O_5 SO_3 Cl_2O_7 Ar संयोजकता 1 2 3 4 5 6 7 शून्य

14. ऑक्साइडों का क्षारीय गुण (Basic Nature of Oxides)—आवर्त में ऑक्साइडों का क्षारीय गुण परमाणु क्रमांक के बढ़ने के साथ-साथ घटता है।

 Na_2O MgO Al_2O_3 CO_2 P_2O_5 SO_3 Cl_2O_7 प्रबल क्षारीय कम क्षारीय उभयधर्मी अम्लीय अम्लीय अम्लीय अम्लीय

15. परमाणु त्रिज्या—प्रत्येक आवर्त में पहले वर्ग से सातवें वर्ग की ओर जाने पर तत्वों की परमाणु त्रिज्या का मान क्रमानुसार घटता है।

समूह	I	II	III	IV	\mathbf{V}	VI	VII
तत्व	Li	Be	В	C	N	Ο	F
परमाणु-क्रमांक	3	4	5	6	7	8	9
परमाणु त्रिज्या (Å)	1.34	0.90	0.80	0.77	0.75	0.73	0.72

16. बाएँ से दाएँ चलने पर तत्वों का घनत्व, क्वथनांक व गलनांक क्रमानुसार बढ़ता है तथा मध्य तत्व पर सबसे अधिक हो जाता है, परन्तु आगे चलने पर घटता है।

(ii) वर्गों तथा उपवर्गों की विशेषताएँ

- (i) '0' से 'VIII' तक कुल 9 वर्ग होते हैं।
- (ii) प्रत्येक वर्ग की वर्ग संख्या अपनी विशिष्ट संयोजकता (Valency) को प्रकट करती है जैसे '0' वर्ग के तत्वों की संयोजकता शून्य है, 'I' वर्ग के तत्वों की संयोजकता 1 है तथा 'III' के वर्ग के तत्वों की संयोजकता 3 है।
- (iii) कुछ अपवादों को छोड़कर किसी एक वर्ग के तत्वों के गुण समान होते हैं।
- (iv) एक वर्ग में नीचे के तत्वों का परमाणु भार ऊपर के तत्वों के परमाणु भार से अधिक होता है।
- (v) शून्य तथा आठवे वर्ग को छोड़कर अन्य वर्गों को उप-वर्गों (Sub-groups) में विभाजित किया गया है। इनको उप-वर्ग 'A' तथा उप-वर्ग 'B' कहते हैं। सारणी में उप-वर्ग 'A' को बायीं ओर तथा उप-वर्ग 'B' को दायीं ओर लिखते हैं। किसी उप-वर्ग में उपस्थित तत्वों में अधिक समानता पायी जाती है तथा ये तत्व दूसरे उपवर्ग में उपस्थित तत्वों से भिन्न होते हैं, जैसे—प्रथम वर्ग के उप-समूह 'A' में 6 तत्व Li, Na, K, Rb, Cs व Fr है तथा उप-वर्ग 'B' में Cu, Ag तथा Au उपस्थित हैं। उप-वर्ग A तथा B में उपस्थित तत्वों में अन्तर पाया जाता है।
- (vi) एक ही वर्ग में परमाणु क्रमांक के वृद्धि-क्रम के साथ तत्वों के गुणों में क्रमबद्ध परिवर्तन होता है।
- (vii) विभिन्न समूहों में उपस्थित तत्व सामान्य (Normal), संक्रमण (Transitional), दुर्लभ मृदा (Rare Earths) तथा एक्टिनाइड (Actinides) हो सकते हैं। आधुनिक प्रणाली में 'B' उप-वर्ग, (भारी धातुएँ) के तत्व संक्रमण तत्व कहलाते हैं और उप-वर्ग 'A' के तत्व (हल्की धातु तथा अधातु) सामान्य तत्व (Normal Elements) कहलाते हैं।

- (क) धात्विक लक्षण या धन विद्युती लक्षण—परमाणु क्रमांक के वृद्धि क्रम के साथ बढ़ता है।
- (ख) आयनन विभव (Ionisation Potential)—अर्थात् किसी परमाणु से इलेक्ट्रॉन विस्थापित करने के लिए आवश्यक ऊर्जा परमाणु क्रमांक में वृद्धि-कम के साथ घटती है।
- (ग) विद्युती ऋणीयता (Electronegativity)—अर्थात् किसी परमाणु की अपनी ओर इलेक्ट्रॉन आकर्षित करने की प्रवृत्ति परमाणु क्रमांक के वृद्धि-क्रम के साथ घटती है।

मेण्डलीफ की आवर्त सारणी की उपयोगिता

- 1. तत्वों का वर्गीकरण—मेण्डलीफ की आवर्त सारणी का मुख्य उपयोग यह है कि 109 तत्वों के भौतिक तथा रासायनिक गुणों का अध्ययन अलग-अलग न रहकर केवल 9 समूहों के अध्ययन तक सीमित रह गया है।
- 2. परमाणु भार का आकलन—चूँिक किसी वर्ग विशेष में उपस्थित तत्व की संयोजकता उसकी वर्ग संख्या के बराबर होती है, यदि तत्व का तुल्यांकी भार ज्ञात है तो उसका परमाणु भार निम्नलिखित सूत्र से ज्ञात कर सकते हैं—

परमाणु भार = तुल्यांकी भार × संयोजकता

- 3. संदेहास्पद परमाणु भारों का सही निर्धारण—मेण्डलीफ की आवर्त-सारणी की सहायता से बहुत से तत्वों के परमाणु भारों का सही निर्धारण करने में सहायता मिलती है। जैसे, Be का परमाणु भार इसकी संयोजकता तीन मानकर $4.5 \times 3 = 13.5$ माना जाता था [4.5 इनकी तुल्यांकी भार है] परन्तु मेण्डलीफ ने इसे द्विसंयोजी मानकर द्वितीय वर्ग में रखा। बाद में इसका परमाणु भार $4.5 \times 2 = 9$ निकाला गया जो रासायनिक व्यवहार से पूर्णतः मेल खाता है।
- 4. नये तत्वों की खोज में—मेण्डलीफ की आवर्त सारणी में दो क्रमागत तत्वों के परमाणु भार में लगभग दो से तीन इकाइयों का अन्तर है। जहाँ अन्तर छः या छः से अधिक इकाई का हुआ वहीं मेण्डलीफ ने दोनों तत्वों के मध्य एक रिक्त स्थान छोड़ दिया। उसने इन तत्वों के गुणों का वर्णन भी इस वर्ग के गुणों के आधार पर कर दिया। उदाहरणार्थ, मेण्डलीफ की मूल आवर्त सारणी में बाद में खोजे गये तत्व स्कैण्डियम (Sc), गैलियम (Ga) तथा जर्मेनियम (Ge) के स्थान रिक्त थे जिनको उसने क्रमशः एका बोरॉन, एका एलुमीनियम तथा एका सिलिकॉन नाम दिया था।

प्रशिक्षुओं से चर्चा करें-

 तत्वों की आधुनिक आवर्त सारणी में तत्वों का वर्गीकरण किस आधार पर किया गया है?

तत्वों की आधुनिक आवर्त सारणी (Elements of Modern Periodic Table)

तत्वों के आवर्त वर्गीकरण का आधुनिकतम स्वरूप दीर्घाकार आधुनिक आवर्त-सारणी (Long form of Modern Periodic Table) [देखें सारणी-5] है। इस सारणी में, मेण्डलीफ की आवर्त-सारणी [सारणी-4] के उपवर्गीं, A तथा B, को समाप्त करते समय 18 वर्गीं/उपवर्गीं को एक लम्बी श्रेणी में रखा गया है। इन 18 वर्गीं को 1 से 18 तक क्रमांकित किया गया है। [संदर्भ हेतु इनके पुराने वर्ग/उपवर्ग भी सारणी में दिये गये हैं।] दीर्घाकार आवर्त सारणी का आधार परमाणुओं का इलेक्ट्रॉनिक विन्यास है। इसके अनुसार, तत्वों के भौतिक तथा रासायिनक गुण उनके इलेक्ट्रॉनिक विन्यास के आवर्ती फलन होते हैं।

किसी तत्व का परमाणु-क्रमांक उसके परमाणु के इलेक्ट्रॉन कोशों (1, 2, 3, 4,......) अथवा K, L, M, N,.......) में इलेक्ट्रॉनों की संपूर्ण संख्या को व्यक्त करता है। अतः आवर्त-सारणी में तत्वों को परमाणु-क्रमांकों के बढ़ते क्रम में रखने से किसी तत्व से अगले तत्व में इलेक्ट्रॉनों की संख्या 1 से बढ़ जाती है। इस नये इलेक्ट्रॉन का प्रवेश इलेक्ट्रॉन-वितरण की **बोर-बरी योजना (Bohr-Bury Scheme)** के अनुसार, किसी कोश के उपकोशों (s, p, d) तथा f) में क्रमानुसार होता है। आधुनिक दीर्घाकार आवर्त-सारणी में, मेण्डलीफ की संशोधित आवर्त सारणी के उपवर्गों को, उपकोशों में अन्तिम इलेक्ट्रॉन के प्रवेश के क्रम में ही अलग-अलग रखा गया है। आवर्त-सारणी का यह स्वरूप सारणी-5 में प्रदर्शित है।

चर्चा करें—

आधुनिक आवर्त सारणी की क्या विशेषताएँ हैं?

चर्चा उपरान्त स्पष्ट करें—

आधुनिक आवर्त सारणी की विशेषताएँ

इसकी विशेषताएँ निम्नवत् हैं—

- इस सारणी में 7 क्षैतिज पंक्तियाँ (Horizontal rows) हैं, जिन्हें आवर्त (Period) कहते हैं तथा 18 ऊर्ध्वाधर स्तम्भ (verticle columns) है, जिन्हें वर्ग (Group) या समूह कहते हैं।
- 2. प्रत्येक आवर्त को चाहे वह लघु हो अथवा दीर्घ, एक ही रेखा में रखा गया है— अर्थात् मेण्डलीफ की सारणी की भाँति उसे प्रथम तथा द्वितीय उपश्रेणियों में नहीं बाँटा गया।

(75)

सारणी 5 : तत्त्वों की आधुनिक आवर्त-सारणी (दीर्घाकार)

			7)	,				* 5						
Sub-group (Old)	N I	II A	8 III 8	IV B	٧B	N N	VII B	VIII	IIIA	III/	<u>8</u>	8	■	Y A	A A	A N	VIII A	0
New	-	2	ო	4	ß	ဖ	2	8	6	9	π	12	13	14	15	16	17	18
	←-s-block→	ock→					-d-block	-d-block Transition elements	age .				↓		- p-block	¥		
-	Ŧ,				* * * * * * * * * * * * * * * * * * *						. '						I_	H ₂
8	ゴ	₽ B											യ്	ರ್ಹ	Z,	0	щ	oN₀t
ю	"Na	M ₂₁									-,		IA _{E1}	ıù*	چ <u>ہ</u> ۔	လီး	<u>o</u>	A ₈₁
4	禾	SCa Ca	Sc	L ²³	>82	ರ್ಷ	₂₅ Mn	28 Рө	27CO	N ₈₈	no.	₃₀ Zn	31Ga	_ж Сө	33AS	S. Se	æ	永 고
ro.	82.	S ₈₈	≻ _{gg}	1Z°	S.	Mo.	eT.	FP.	문	Pd⁰	β A ²	ರ್ಷ್ಹ	- <u>II</u> 65	nS ₀₈	S ₁ Sb	s ₂ Te	-8	Xe Xe
9	ಬ್ಹ	se Ba	s,La*	Ŧ,	Ta Ta	W ₂₂	,R ^s	SO ₉	η _π	Pt Pt	n ₆	gH%	Th.	Pb	E Bi	Po-	85 At	"Ru
7	74.	вВв	*Ac*	π ₂	dO ₂₀₁	Sg	HB ₇₀₁	Hs	109Mt	sQ ₀₁₁	,,,Rg	Unp	,13 Uut	"3Uut "4Uug "5Uup	dnD ₈₁₁	" _e Uuh	. 1	onD ₈₁₁
			-			4	f-block						,	\uparrow				*
*Lanthanides	ರ್ಜ್ಜಿ	P.	PN%	₁ Pm	mS ₂₈	JH 8	PG 3	dT ₂₀	Dy O	0Н ²⁹	eg Er	m ₆₉	dY _{or}	"Lu				
**Actinides	٦.	я-Ра	D.%	dN ₂₈	P.	"Am	S E	»,BK	ರ್ಷ	%Es	™ _{1∞} Fm	PW ₁₀₁	No	Lw	• ' '			

Numbers on the lower left side of atomic-symbol show the atomic-number.

∵ .⊲

²He in mostly shown as a p-block element, which is not possible, by the very definition of a p-block element. [He atom has no p-orbitals.]

3. प्रत्येक आवर्त में, उपकोशों में अन्तिम इलेक्ट्रॉन के प्रवेश के अनुसार तत्वों को उपवर्गीं में निम्नलिखित क्रम में रखा गया है—

s-उपकोश—IA, IIA [अधिकतम 2 इलेक्ट्रॉन]

p-उपकोश—III-A, IV-A, V-A, VI-A, VII-A तथा 0 [अधिकतम 6 इलेक्ट्रॉन] **d-उपकोश**—III-B, IV-B, V-B, VI-B, VII-B, VIII, VIII, VIII, I-B, II-B [अधिकतम 10 इलेक्ट्रॉन]

इस प्रकार इस सारणी में किसी तत्व की स्थित से ज्ञात हो जाता है कि उसमें अन्तिम इलेक्ट्रॉन की आपूर्ति किस कोश तथा किस उपकोश में हुई है। यह स्थिति इसका भी ज्ञान कराती है कि परमाणु में कौन-से कोश तथा उपकोश पूर्णतः भरे जा चुके हैं।

दिप्पणी—I.U.P.A.C. (International Union of Pure and Applied Chemistry) द्वारा, वर्ष 1986 में की गयी संस्तृतियों के अनुसार, आवर्त सारणी के दीर्घ-स्वरूप में वर्गों तथा उपवर्गों के भेद (A तथा B) को समाप्त करके, सारणी के सभी स्तम्भों को 1 से 18 तक क्रमांकित किया जाता है। सारणी-5 में पुराने क्रमांकन के नीचे नवीन क्रमांकन भी प्रदर्शित हैं।

- 4. दीर्घाकार आवर्त सारणी में तत्वों को चार खण्डों अथवा ब्लाकों (blocks) में स्पष्टतः विभाजित किया गया है। इन्हें क्रमशः $s,\ p,\ d$ तथा f ब्लॉक के तत्व कहते हैं। किसी एक ब्लॉक के तत्वों के लक्षणों में अनेक समानताएँ तथा अन्य ब्लॉक के तत्वों से भिन्नताएँ होती हैं।
- 5. लैन्थेनाइड तथा एक्टिनाइड श्रेणियों को अलग लिखा गया है तथा इनके स्थानों का मुख्य सारणी में स्थान तारांकित (* तथा **) किया गया है—अर्थात् इन श्रेणियों को मुख्य सारणी में इन तारांकित स्थानों पर लिखा जाना चाहिए। परन्तु ऐसा करने से, सारणी में कुल 32 स्तम्भ हो जाते हैं तथा सारणी की लम्बाई (मुद्रण में) असुविधाजनक हो जाती है। अतः इन श्रेणियों को अलग लिखा जाता है। ये f-ब्लॉक के तत्व होते हैं।
- 6. इस सारणी में धात्वीय एवं अधात्वीय तत्वों को, संक्रमण तत्वों को तथा अक्रिय तत्वों को स्पष्टतः देखा जा सकता है।
- 7. हाइड्रोजन के अनेक गुण वर्ग I-A के तत्वों से तथा अनेक गुण वर्ग VII-A के तत्वों से मिलते-जुलते हैं—अतः इसे दोनों वर्गों में रखा गया है।

स्मरणीय बिन्दु

- मेण्डलीफ का आवर्त नियम—''तत्वों के भौतिक तथा रासायनिक गुण उनके परमाणु भारों के आवर्ती फलन होते हैं।'' यह मेण्डलीफ का आवर्त नियम है। मेण्डलीफ की आवर्त सारणी में सात आवर्त तथा नौ समूह हैं। आवर्त सारणी के दूसरे और तीसरे लघ् आवर्त में आठ-आठ तत्व होते हैं। इन्हें प्रारूपिक तत्व कहते हैं। ये तत्व अपने-अपने समूह के प्रतिनिधि के रूप में होते हैं, जैसे—Li - Mg, Be - Al, B - Si आदि।
- ''तत्वों के भौतिक तथा रासायनिक गृण उनके परमाण क्रमांकों के आवर्ती फलन होते हैं।'' यह आध्निक आवर्त नियम है। दीर्घाकार आवर्त सारणी में सात क्षैतिज पंक्तियाँ तथा अठारह ऊर्ध्वाधर कॉलम होते हैं। संक्रमण तत्व परिवर्ती संयोजकता प्रदर्शित करते हैं; जैसे—आयरन की दो संयोजकताएँ +2 और +3 हैं। दुर्लभ मृदा तत्वों का इलेक्ट्रॉनिक विन्यास 2, 18, (18 + x) 9, 2 है, जहाँ x का मान 1 से 14 तक है। इन्हें आवर्त सारणी में अलग एक ही स्थान पर रखा गया है।
- आवर्त सारणी में \mathbf{H} का स्थान निश्चित नहीं है। यह $\mathbf{I} extbf{-}\mathbf{A}$ की क्षार धातुओं और $\mathbf{VII} extbf{-}\mathbf{A}$ के हैलोजनों से समानता रखता है। यह व्यवहार इसके इलेक्ट्रॉनिक विन्यास के कारण है।
- N और P को आधुनिक आवर्त सारणी के पंचम समूह (V-A) में रखा गया है। इनके अन्तिम कोश में 5 इलेक्ट्रॉन हैं। O और S की संशोधित आवर्त सारणी के VI-A समूह में रखा गया है। इनके बाह्यतम कोश में 6 इलेक्ट्रॉन हैं।
- आध्निक आवर्त सारणी में कार्बन को IV-A समूह तथा द्वितीय आवर्त में रखा गया एक अधात् है। Cl हैलोजन की श्रेणी में आता है। आवर्त सारणी में इसे VII-A समूह में रखा गया है। जिस तत्व की परमाण् त्रिज्या एक ही समूह में सर्वाधिक होती है, उसकी धात्विकता सबसे अधिक होती है। N की पाँच संयोजकताएँ क्रमशः 1, 2, 3, 4 और 5 हैं, जबिक P की संयोजकताएँ क्रमशः 3 और 5 है।

मुल्यांकन

बहुविकल्पीय प्रश्न—

- किसी समूह में ऊपर से नीचे की ओर बढ़ने पर—
 - (i) आयनिक त्रिज्या घटती जाती है। (ii) स्चालकता घटती जाती है।
- - (iii) घनत्व घटता रहता है।
- (iv) धात्विकता बढ़ती जाती है।

(78)

2.	किसी आवर्त में बाएँ से दाएँ बढ़ने पर तत्व	म ों की—
	(i) धन विद्युती प्रकृति बढ़ती जाती है।	
	(ii) धात्विकता बढ़ती जाती है।	
	(iii) आयनिक त्रिज्या बढ़ती जाती है।	
	(iv) तत्वों के ऑक्साइडों की क्षारीय प्रकृति	घटती जाती है।
3.	मेण्डलीफ आवर्त-सारणी में एक दोष यह है	कि—
	(i) हैलोजन परिवार के सदस्यों को एक सम्	पूह में रखा गया है।
	(ii) इसके आधार पर अज्ञात तत्वों के गुणों वे	के बारे में कोई भविष्यवाणी नहीं की जा सकती है।
	(iii) सर्वथा भिन्न गुणों वाले तत्व एक ही	समूह में स्थान पा गए हैं।
	(iv) सारणी को बनाने में कोई आधारभूत ि	सेद्धान्त नहीं रखा गया है।
4.	परमाणु क्रमांक 17 वाले तत्व का आवर्त स	ारणी में स्थान है—
	(i) VII आवर्त, VII वर्ग	(ii) III आवर्त, VII वर्ग
	(iii) IV आवर्त, VII वर्ग	(iv) II आवर्त, VI वर्ग
5.	Be का विकर्ण सम्बन्ध है—	
	(i) Mg	(ii) Al
	(iii) B	(iv) Na
6.	आधुनिक आवर्त सारणी का आधार है—	
	(i) परमाणु भार	(ii) परमाणु क्रमांक
	(iii) संयोजकता	(iv) रासायनिक क्रियाशीलता
7.	आवर्त-सारणी के किसी समूह में परमाणु-क्रमांव	क की वृद्धि के साथ बढ़ता है—
	(i) धन विद्युती लक्षण	(ii) आयनन विभव
	(iii) विद्युत ऋणीयता	(iv) अधात्विक लक्षण
8.	द्वितीय आवर्त में तत्वों की संख्या होती है—	
	(i) 2	(ii) 10
	(iii) 8	(iv) 18
9.	किसी तत्व की विद्युत-धनात्मकता सबसे अधिव	ō है—
	(i) F	(ii) Mg
	(iii) Na	(iv) K

10.	निम्नलिखित में से किस समूह के तत्वों की	सर्वाधिक हाइड्रोजन-संयोजकता होती है—
	(i) I	(ii) VII
	(iii) IV	(iv) O
11.	तत्वों के गुण निर्भर करते हैं, उनके परमाणु	ओं—
	(i) में प्रोट्रॉनों की संख्या पर	
	(ii) में न्यूट्रॉनों की संख्या पर	
	(iii) के द्रव्यमान पर	
	(iv) उपर्युक्त किसी पर नहीं	
12.	निम्नवत् में अम्लीय ऑक्साइड है—	
	(i) Al ₂ O ₃	(ii) K ₂ O
	(iii) MgO	(iv) P ₂ O ₅
13.	निम्नलिखित में क्षारीय धातु है—	
	(i) Na	(ii) Be
	(iii) Al	(iv) Zn
14.	उभयधर्मी ऑक्साइड है—	
	(i) Na ₂ O	(ii) P ₂ O ₅
	(iii) Al ₂ O ₃	(iv) MgO ₅
अति	लघु उत्तरीय प्रश्न—	
15.	एक तत्व ${f M}$ के सल्फाइड का सूत्र ${f M}_2{f S}_5$ है	। यह तत्व आवर्त-सारणी के किस उपवर्ग में होगा?
16.	एक तत्व ${f M}$ आवर्त सारणी के वर्ग ${f III}$ ${f A}$ में	है। इसके क्लोराइड तथा ऑक्साइड के सूत्र लिखिए।
17.	अधिकतम कितने तत्व हो सकते हैं?	
	(i) आवर्त संख्या n में	
	(ii) किसी आवर्त के p ब्लॉक तथा d ब्ल	ॉक में
	(iii) किसी आवर्त के f ब्लॉक में।	
18.	निम्नलिखित यौगिकों में बताइए कि हाइड्रोजन	विद्युत-धनी है अथवा विद्युत-ऋणी—
	(i) NH ₃ (ii) HCl (iii) H ₂ S	(iv) PH ₃
19.		जन ऋणायन के रूप में हो। इस आयन का आवेश
	भी लिखिए।	

लघु उत्तरीय प्रश्न—

- 20. निम्नलिखित का संक्षिप्त विवरण दीजिए—
 - (i) डोबरनियर का त्रिक् नियम
 - (ii) न्यूलैण्ड का अष्टक नियम
 - (iii) संक्रमण तत्व
 - (iv) विकर्ण सम्बन्ध
- 21. मेण्डलीफ का आवर्त नियम लिखिए। इसमें क्या संशोधन करके आधुनिक आवर्त नियम प्राप्त किया गया?
- 22. मेण्डलीफ आवर्त सारणी के वर्ग तथा आवर्त की दो-दो विशेषताएँ लिखिए।
- 22. आवर्त सारणी के किसी आवर्त में बाएँ से दाएँ जाने पर निम्नलिखित गुणों में क्या परिवर्तन होता है?
 - (i) परमाणु-त्रिज्या
 - (ii) विद्युत-ऋणात्मकता
 - (iii) आयनन-विभव

दीर्घ उत्तरीय प्रश्न—

- 24. मेण्डलीफ की संशोधित आवर्त सारणी के आवर्ती तथा वर्गी एवं उपवर्गी की विशेषताएँ लिखिए।
- 25. आधुनिक आवर्त नियम क्या है? किस वर्ग के ऑक्साइड प्रबल क्षारीय एवं किस वर्ग के प्रबल अम्लीय होते हैं?
- 26. आवर्त तथा वर्ग क्या हैं? इसमें परमाणु त्रिज्या का परिवर्तन किस प्रकार होता है? समझाइए।

इकाई-4

स्थिर विद्युत आवेश, विद्युत धारा, चुम्बकत्व

इस इकाई को पढ़ने के बाद प्रशिक्षु जान सकेंगे—

- 1. स्थिर विद्युत आवेश
 - (a) वस्तुओं का आवेश
 - (b) आवेश के प्रकार
 - (c) स्थिर विद्युत प्रेरण
 - (d) कूलॉम का नियम
 - (e) विद्युत क्षेत्र
 - (f) विद्युत विभव
 - (g) आवेश के सुचालक तथा कुचालक
 - (h) आवेश का स्थानान्तरण
- 2. विद्युत धारा
 - (a) विद्युत धारा के स्रोत तथा क्षेत्रों के संयोग
 - (b) विद्युत यंत्र
 - (c) प्रतिरोध तथा प्रतिरोध के संयोग
 - (d) अन्य प्रकारों की ऊर्जा का विद्युत ऊर्जा में रूपान्तरण
 - (e) विद्युत धारा के प्रभाव
- 3. चुम्बकत्व
 - (a) चुम्बकों के विभिन्न प्रकार
 - (b) चुम्बक के गुण
 - (c) चुम्बकीय क्षेत्र
 - (d) चुम्बक के उपयोग
 - (e) पृथ्वी का चुम्बकीय व्यवहार
 - (f) विद्युत चुम्बक

स्थिर विद्युत आवेश

वस्तुओं का आवेश

बरसात के दिनों में बादलों में आपने तीव्र गड़गड़ाहट के साथ तीक्ष्ण प्रकाश (बिजली) देखी होगी। नाइलान के कपड़ों के उतारते समय चिन्गारी निकलते देखी होगी। 1752 में अमेरिकी वैज्ञानिक बेंजामिन फ्रैंकिलन ने सिद्ध किया कि बरसात के मौसम में घर्षण क्के कारण बादल विद्यतुमय हो जाते हैं। घर्षण द्वारा विद्युतमय होने की क्रिया निम्न क्रिया कलाप के द्वारा समझा जा सकता है—

क्रिया कलाप—

- प्लास्टिक की एक स्केल लें।
- स्केल को सूखे वालों पर रगड़ें।
- अब स्केल को कागज के छोटे-छोटे टुकड़ों के पास लायें।
- कागज के छोटे-छोटे टुकड़े स्केल की ओर आकर्षित हो जाते हैं।
 अतः स्केल को रगड़ने पर उसमें कागज के छोटे टुकड़ों को अपनी ओर आकर्षित करने का गुण आ जाता है।
- अम्बर नामक पदार्थ को ऊन से रगड़ने पर उसमें भी कागज के छोटे टुकड़ों को अपनी ओर आकर्षित करने का गुण आ जाता है। अम्बर की भाँति काँच, आबनूज, गंधक, लाख इत्यादि भी रगड़े जाने पर, हल्की वस्तुओं को अपनी ओर आकर्षित करने लगती है। इस गुण के प्राप्त कर लेने पर वस्तु विद्युतमय कहलाती है अथवा आवेशित पदार्थ भी कहा जाता है।

आइये जानते हैं कि कोई वस्तु रगड़ने से किस प्रकार आवेशित हो जाती है—

आवेशन की क्रिया का इलेक्ट्रॉन सिद्धान्त

प्रशिक्षु जानते हैं कि प्रत्येक पदार्थ छोटे-छोटे कणों के मिल कर बना है।

इलेक्ट्रॉन सिद्धान्त के अनुसार, प्रत्येक पदार्थ परमाणुओं से मिलकर बना है। प्रत्येक परमाणु (Atom) में एक नाभिक होता है इसमें न्यूट्रॉन और प्रोटान होते हैं। प्रोटान पर धन आवेश होता है जबिक न्यूट्रॉन पर कोई आवेश नहीं होता है। इस प्रकार नाभिक धन आवेशित होता है। नाभिक के चारों ओर एक तीसरे प्रकार का कण विभिन्न कक्षाओं में चक्कर लगाते रहते हैं। इन कणों को इलेक्ट्रॉन कहते हैं। इलेक्ट्रॉन पर प्रोटान के धन आवेश के बराबर ऋण आवेश होता है। परमाणु में इलेक्ट्रॉनों की संख्या

(83)

नाभिक के प्रोटॉनों की संख्या के बराबर होती है। अतः परमाणु में धन आवेश तथा ऋण आवेश की संख्या बराबर होती है। इस प्रकार परमाणु विद्युत उदासीन होता है।

किसी परमाणु में प्रोटान अथवा धन आवेश नाभिक के होने के कारण उसे अपने स्थान से नहीं हटाया जा सकता लेकिन इलेक्ट्रॉन नाभिक के बाहर विभिन्न कक्षाओं में चक्कर लगाता है। अतः उसे आसानी से हटाया जा सकता है। जब किसी परमाणु दो एक अथवा अधिक इलेक्ट्रॉन निकाल लिया जाता है तो उस परमाणु में धन आवेशों की संख्या ऋण आवेशों की संख्या से अधिक हो जाती है और वह परमाणु धन आवेशित हो जाता है। इस प्रकार किसी वस्तु का धन आवेशित होना उसके परमाणुओं में इलेक्ट्रॉनों की कमी प्रदर्शित करता है। इसके विपरीत यदि किसी परमाणु को एक अथवा अधिक इलेक्ट्रॉन दे दें तो वह परमाणु ऋणावेशित हो जाता है। अतः किसी वस्तु का ऋणावेशित होना परमाणुओं में इलेक्ट्रॉनों की अधिकता प्रदर्शित करता है।

विद्युतीकरण के लिये इलेक्ट्रॉन ही उत्तरदायी है न कि प्रोटॉन

घर्षण द्वारा आवेशन की व्याख्या

ज़ब काँच की छड़ के रेशम से रगड़ते हैं तो काँच के परमाणुओं से कुछ इलेक्ट्रॉन निकल कर रेशम में चले जाते हैं। इससे काँच पर इलेक्ट्रॉनों की कमी हो जाने के कारण धन आवेश की अधिकता हो जाती है तथा रेशम पर ऋण आवेश की अधिकता हो जाती है। अतः काँच की छड़ धन-आवेशित तथा रेशम ऋण-आवेशित हो जाती है। इसी प्रकार, जब आबनूस की छड़ को बिल्ली की खाल से रगड़ते हैं तो खाल से कुछ इलेक्ट्रॉन आबनूस में आ जाते हैं। अतः आबनूस की छड़ इलेक्ट्रॉनों की अधिकता के कारण ऋण-आवेशित हो जाती है तथा खाल इलेक्ट्रॉनों की कमी के कारण धन-आवेशित हो जाती है। जितने इलेक्ट्रॉन (ऋण आवेश) एक वस्तु से निकलते हैं उतने ही इलेक्ट्रॉन (ऋण आवेश) दूसरी वस्तु में चले जाते हैं। अतः दोनों वस्तुओं में कुल आवेश का मान शून्य है। स्पष्ट है कि

वैद्युत आवेश न तो उत्पन्न किया जा सकता है और न ही नष्ट किया जा सकता है।

इसे 'वैद्युत आवेश-संरक्षण का नियम' कहते हैं।

आवेश का मात्रक तथा मूल आवेश

MKSA पद्धित में वैद्युत आवेश का मात्रक 'कूलॉम' कहलाता है। इसे C से प्रदर्शित करते हैं। एक इलेक्ट्रॉन पर 1.6×10^{-19} कूलाम ऋण-आवेश होता है। अतः यह वह छोटे से छोटा आवेश है जो कि किसी एक आवेशित कण पर हो सकता है। इसे e से प्रदर्शित करते हैं। इस आवेश e को **मूल आवेश** कहते हैं।

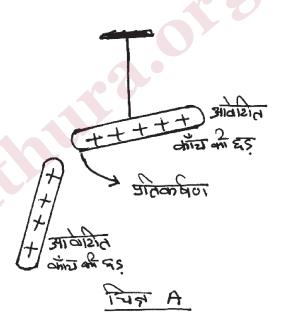
(84)

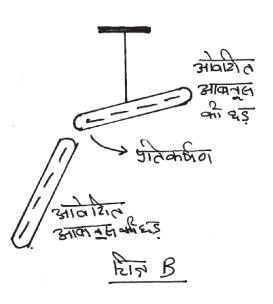
इलेक्ट्रॉन का आवेश = -eप्रोट्रॉन का आवेश = +e α कण का आवेश = +2e

आवेश के प्रकार (धन तथा ऋण आवेश)

रगड़ने पर वस्तु आवेशित हो जाती हैं लेकिन विभिन्न पदार्थ का आवेश भिन्न प्रकार का होता है। इसको क्रिया कलाप द्वारा समझा जा सकता है।

क्रिया कलाप—

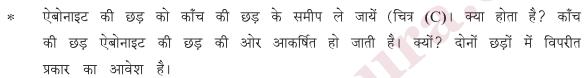

- काँच की एक छड़ लें।
- छड़ को रेशम के कपड़े से रगड़ें।
- छड़ के मध्य भाग में रेशम का डोरा बाँधकर
 चित्रानुसार स्टैण्ड से लटकायें।
- काँच की एक अन्य छड़ को रेशम के कपड़े
 से रगड़कर लटकी हुई छड़ के समीप लायें
 (चित्र (A)। क्या होता है?


दूसरी छड़ लटकी हुई छड़ को प्रतिकर्षित कर देती है। क्यों? दोनों छड़ों में समान प्रकार का आवेश आ जाता है। (धन आवेश)

क्रिया कलाप—

- * ऐबोनाइट की दो छड़ें लें।
- * छड़ों को फलालेन से रगड़कर आवेशित करें।
- एक छड़ को रेशम के पतले धागे से बाँधकर
 चित्रानुसार लटकायें।
- दूसरी छड़ से लटकी हुई छड़ के समीप लायें
 (चित्र (B)। क्या होता है?

दूसरी छड़ लटकी हुई छड़ को प्रतिकर्षित (दूर) कर देती है। क्यों? दोनों छड़ों में समान प्रकार का आवेश आ जाता है। (ऋण आवेश)



(85)

क्रिया कलाप—

- * काँच की एक छड़ लें।
- छड़ को रेशम के कपड़े से रगड़कर आवेशित
 करें।
- छड़ के मध्य भाग में धागा बाँधकर उसे
 स्टैण्ड से लटकायें।
- अब ऐबोनाइट की छड़ लें।
- इस छड़ को फलालेन से रगड़कर आवेशित
 करें।

अतः

- * आवेश दो प्रकार के होते हैं, धनात्मक आवेश एवं ऋणात्मक आवेश।
- * समान प्रकार के आवेश एक-दूसरे को प्रतिकर्षित करते हैं।
- * विपरीत प्रकार के आवेश एक-दूसरे को आकर्षित करते हैं।

विशोष—

एक आवेशित वस्तु दूसरी अनावेशित वस्तु को आकर्षित कर सकती है लेकिन उसे प्रतिकर्षित नहीं कर सकती। अतः प्रतिकर्षण ही वस्तुओं के आवेशित होने का वास्तविक प्रमाण है।

स्थित विद्युत प्रेरण (Electrostatic Induction)

जब किसी चालक के पास कोई आवेशित वस्तु लाई जाती है, तो वह चालक भी आवेशित हो जाता है। उसके पास के सिरे पर विपरीत आवेश तथा दूर के सिरे पर समान आवेश उत्पन्न होता है। यह दोनों प्रकार के आवेश चालक के सिरों पर तभी तक रहते हैं, जब तक कि आवेशित वस्तु चालक के पास रहती है। इस प्रकार से चालक के आवेशित होने की क्रिया को स्थित विद्युत प्रेरण कहते हैं।

क्रिया कलाप

प्रेरण द्वारा किसी चालक को आवेशित करना।

सर्वप्रथम एक चालक के समीप धन आवेशित छड़ पकड़ कर रिखये।

(86)

- भ्रेरण द्वारा चालक का निकटवर्ती
 सिरा ऋणात्मक और दूर वाला सिरा
 धनात्मक हो जायेगा।
- चालक का ऋण आवेश, छड़ के धन
 आवेश से बँधा (खींचा) रहता है।
- दूसरने सिरे को बायीं उँगली से छू
 दीजिए।
- अमीन से शरीर द्वारा इलेक्ट्रॉन आकर
 धन आवेश को उदासीन कर देता है।
- अब चालक को हटा लीजिए।
- * बँधा हुआ ऋण आवेश पूरे चालक में फैल जाता है जिससे चालक ऋण आवेशित हो जाती है।

इसी प्रकार ऋण आवेशित छड़ समीप लाकर ऊपर की विधि से किसी शुद्ध चालक को धन आवेशित किया जा सकता है।

आकाशीय विद्युत

अक्सर बरसात के दिनों में आप आसमान में बिजली की चकाचौंध किर देने वाली रोशनी और उसके साथ ही बादलों की गड़गड़ाहट देखते एवं सुनते हैं। बादलों की तड़क ऐसी होती है मानों आसमान फट जायेगा और बिजली की टेढ़ी-मेढ़ी लपलपाती धार धरती में प्रवेश कर जायेगी। वास्तव में यह आकाशीय विद्युत (आसमानी बिजली) है।

धन विद्युत आवेशित छड़

आकाश में चमकती बिजली

आसमानी बिजली के अलौकिक नजारे में पहले बिजली की चमक फिर बादलों का गर्जन-तर्जन सुनाई देती है। सच तो यह है कि पहले बादल गरजते हैं फिर बिजली चमकती है। चूँिक प्रकाश का वेग ध्विन के वेग से काफी अधिक होता है। अतः बिजली की चमक पहले दिखायी देती है तथा गरज की ध्विन बाद में सुनायी पड़ती है। कभी बादलों के बीच विद्युत स्फूलिंग (चमक) छोटी और कभी कई किलोमीटर लम्बी दिखाई पड़ती है। कभी यह आसमानी बिजली भयानक कड़क के साथ घरों, वृक्षों और जीवों पर गिरती हुई देखी जाती है। आसमानी बिजली गिरने से अचानक वस्तुयें टूट कर छितरा जाती हैं, जलने वाली वस्तुयें भरम हो जाती हैं, धातु की बनी हुई वस्तुयें पिघल जाती हैं और जीवधारी

प्राणी निर्जीव हो जाते हैं। बिजली गिरने से धरती में तीन मीटर से भी अधिक गहरे गड्ढे होते देखें गये हैं। कभी-कभी पूरे जंगल जलकर राख हो जाते हैं और उत्पादन नष्ट हो जाते हैं। इस तरह करोड़ों की सम्पत्ति नष्ट हो जाती है। इसकी तरंगों से जो झटका लगता है उससे तत्काल आदमी की मृत्यु हो जाती है।

तड़ित चालक

बिजली से बचने का उपाय सबसे पहले बेन्जामिन फ्रैन्किलिन ने बताया। इसके लिए उन्होंने एक यंत्र बनाया जिसे आज हम तिइत चालक कहते हैं। यह एक धातु की छड़ होती है जिसे किसी भवन पर लगाकर उसके निचले सिरे को एक तार से जोड़कर जमीन में गाड़ देते हैं। जब तिइत धरती की ओर आती है तो छड़ की ओर आकर्षित होती है और उसी के जिरये धरती में समा जाती है जिससे भवन को कोई क्षिति नहीं पहुँचती है। फ्रैन्किलिन का यह आविष्कार (तिड़त चालक) निःसन्देह ही बड़ा उपयोगी साबित हुआ है। आज भी भवनों की सुरक्षा के लिए तिड़त चालक लगाये जाते हैं जिससे बिजली गिरने से भवनों के क्षित की सम्भावना काफी कम हो जाती है।

कूलॉम का नियम

सन् 1785 ई. में फ्रांसीसी वैज्ञानिक कूलॉम ने प्रयोगों के आधार पर दो आवेशों के बीच कार्य करने वाले (आकर्षण या प्रतिकर्षण) के सम्बन्ध में एक नियम दिया जिसे 'कूलॉम का नियम' कहते हैं। इस नियम के अनुसार, दो स्थिर बिन्दु-आवेशों के बीच लगने वाला आकर्षण अथवा प्रतिकर्षण का बल दोनों आवेशों की मात्राओं के गुणनफल के अनुक्रमानुपाती तथा उनके बीच की दूरी के वर्ग के व्युक्तमानुपाती होता है। यह बल दोनों आवेशों को मिलाने वाली रेखा के अनुदिश होता है।

$$Flpharac{q_1q_2}{r^2}$$
 $F=Krac{q_1q_2}{r^2}$ (जहाँ k अनुक्रमानुपाती नियतांक है जिसका मान $9 imes 10^9$ होता है।)

$$F = 9 \times 10^9 \frac{q_1 q_2}{r^2}$$
 न्यूटन

इस समीकरण में यदि $q_1=q_2=1$ कूलॉम तथा r=1 मीटर हो, तो $F=9 \times 10^9$ न्यूटन होगा।

(88)

अतः 1 कूलॉम वह आवेश है जो अपने से 1 मीटर की दूरी पर निर्वात अथवा वायु में इसे अपने बराबर समान आवेश को 9×10^9 न्यूटन के बल से प्रतिकर्षित करता है।

1 माइको कूलॉम = 10^{-6} कूलॉम

विद्युत क्षेत्र तथा विद्युत क्षेत्र की तीव्रता

किसी आवेश के चारों ओर का वह क्षेत्र जिसमें कोई दूसरा आवेश आकर्षण अथवा प्रतिकर्षण बल का अनुभव करता है, वैद्युत क्षेत्र कहलाता है।

विद्युत क्षेत्र के किसी बिन्दु पर क्षेत्र की तीव्रता ज्ञात करने के लिये उस बिन्दु पर एक बहुत ही छोटा आवेश q_0 रखते हैं जिसे धन परीक्षण आवेश भी कहते हैं। परीक्षण आवेश पर लगने वाला बल (F) और परीक्षण आवेश (q_0) के अनुपात को उस बिन्दु पर विद्युत क्षेत्र की तीव्रता कहते हैं। इसे E से प्रदर्शित करते हैं।

$$E = \frac{F}{q_0}$$
 न्यूटन/कूलॉम

विद्युत क्षेत्र की तीव्रता की दिशा परीक्षण आवेश पर लगने वाले बल की ही दिशा होती है।

विद्युत विभवान्तर तथा विद्युत विभव

किसी बिन्दु आवेश के चारों ओर एक विद्युत क्षेत्र बन जाता है। इस क्षेत्र में परीक्षण आवेश रखने पर उस पर एक बल लगने लगता है। इस परीक्षण आवेश को क्षेत्र में एक बिन्दु से दूसरे बिन्दु तक ले जाने में जितना कार्य करना पड़ता है, उसे उन दो बिन्दुओं के बीच विद्युत विभवान्तर कहते हैं, इसे V से प्रदर्शित करते हैं।

$$+q$$
 \longrightarrow A B $+q_0$ \longrightarrow $V_A-V_B=\frac{W}{q_0}$ (जूल/कूलाम) या वोल्ट

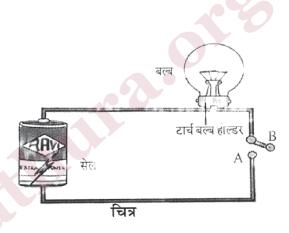
$$V_A - V_B = \frac{W}{q_0}$$
 (जूल/कूलाम) या वोल्ट

यदि एक कूलॉम आवेश को एक बिन्दु से दूसरे बिन्दु तक ले जाने में 1 जूल कार्य करना पड़े, तो उन दोनों बिन्दुओं के बीच विभवान्तर 1 वोल्ट होता है। यदि बिन्दु B अनन्त पर हो, तो $V_B = 0$

$$V_A = \frac{W}{q_0}$$
 वोल्ट

(89)

अतः विद्युत-क्षेत्र में किसी बिन्दु पर विद्युत विभव, किसी परीक्षण आवेश को अनन्त से उस बिन्दु तक लाने में किये गये कार्य तथा परीक्षण आवेश के मान की निष्पत्ति के बराबर होता है।


यदि विद्युत क्षेत्र में q कूलॉम आवेश को दो बिन्दुओं के बीच जिनके बीच वैद्युत विभवान्तर ΔV है, तो किया गया कार्य

$$W = q \times \Delta V$$
 जूल

आवेश के सुचालक तथा कुचालक

क्रिया कलाप

टॉर्च का एक बल्ब लें। बल्ब होल्डर में लगायें। टॉर्च का एक सेल लें। ताँबे के तार द्वारा चित्रानुसार बल्ब और सेल को जोड़ें। ताँबे के तार के स्वतन्त्र सिरों A और B का स्पर्श करायें। क्या होता है? बल्ब से प्रकाश उत्पन्न होता है। A और B को अलग करें। क्या होता है? बल्क से प्रकाश निकलना बन्द हो जाता है। A और B के मध्य प्लास्टिक से बनी वस्तु (जैसे—स्केल, कंघा आदि) जोडें। क्या होता है?

बल्ब प्रकाश नहीं उत्पन्न करता है। क्यों? प्लास्टिक से बनी वस्तुओं में विद्युत का प्रवाह नहीं हो पाता है। पुनः AB के मध्य एक धातु की कील जोड़ें। क्या होता है? बल्ब प्रकिशत हो जाता है। क्यों?

धातु की वस्तुओं से विद्युत प्रवाह होता है। यही प्रयोग विभिन्न प्रकार की वस्तुओं से करें और निम्न प्रकार तालिका लगायें।

विद्युत के चालक	विद्युत के कुचालक
ताँबा	खड़
चाँदी	काँच
ग्रेफाइट	प्लास्टिक
लवणों का जलीय विलयन	पोर्सिलन
एलुमीनियम	लकड़ी

उपरोक्त क्रियाकलाप से यह निष्कर्ष निकलता है कि जैसे ही A और B के मध्य संयोजन पूरा होता है, आवेश प्रवाहित होकर बल्ब को प्रकाशित करने लगते हैं।

आवेश का स्थानान्तरण अथवा विद्युत धारा

जब किसी चालक से होकर आवेश प्रवाहित हो, तो विद्युत धारा उत्पन्न होती है। अतः किसी चालक में आवेश प्रवाह की दर विद्युत धारा कहलाती है। विद्युत धारा की माप चालक में प्रति सेकेण्ड प्रवाहित आवेश की मात्रा से की जाती है।

विद्युत धारा
$$=\frac{$$
 आवेश $}{$ समय $} \frac{($ कूलॉम $)}{($ सेकेण्ड $)}$ या एम्पियर

अतः आवेश प्रवाह की दर विद्युत धारा कहलाती है। इसका मात्रक एम्पियर होता है।

$$1 \quad \text{एम्पियर} \quad = \frac{1 \text{ कूलॉम}}{\text{सेकेण्ड}}$$

यदि विद्युत आवेश के प्रवाह की दर 1 कूलॉम प्रति सेकेण्ड हो, तो धारा का मान एक एम्पियर होगा।

मूल्यांकन प्रश्न

- (A) निम्नलिखित प्रश्नों में सही विकल्प को छाँटकर अभ्यास पुस्तिका में लिखिए—
- 1. ऐबोनाइट की छड़ को रेशम से रगड़ने पर छड़ हो जाती है—
 - (i) धन आवेशित

(ii) ऋण आवेशित

(iii) दोनों आवेश

- (iv) कोई आवेश नहीं
- 2. कंघे को सूखे बालों पर रगड़ने पर वह कागज के छोटे-छोटे टुकड़ों को
 - (i) प्रतिकर्षित करता है

- (ii) आकर्षित करता है
- (iii) प्रतिकर्षित तथा आकर्षित करता है
- (iv) इनमें से कोई नहीं
- 3. आवेश कितने प्रकार के होते हैं?
 - (i) एक

(ii) दो

(iii) तीन

- (iv) चार
- 4. एक इलेक्ट्रॉन पर आवेश होता है—
 - (i) 16×10^{-10} कूलॉम

(ii) 1.6×10^{-9} कूलॉम

(iii) 1.6×10^{-16} कूलॉम

(iv) 1.6×10^{-19} कूलॉम

(91)

- 5. एक चालक पर दो इलेक्ट्रॉन अतिरिक्त हैं, उस पर आवेश होगा—
 - (i) 3.22×10^{-9} कूलॉम

(ii) 3.2×10^{-16} कूलॉम

(iii) 3.2×10^{-19} कूलॉम

- (iv) 3.2 कूलॉम
- 6. काँच की छड़ को रेशम से रगड़ने पर काँच की छड़ पर A कूलॉम का धन आवेश उत्पन्न होता है, तो रेश्याम के कपड़े पर आवेश होगा—
 - (i) 16×10^{-19} धन आवेश

(ii) 16 × 10⁻¹⁹ ऋण आवेश

(iii) शून्य

(iv) अनन्त

(B) लघु उत्तरीय प्रश्न

- 7. आकाशीय बिजली चमकने पर पहले चमक दिखाई देती है फिर गरज सुनाई देती है, क्यों?
- 8. किस यंत्र द्वारा आकाशीय बिजली से भवन को बनाया जा सकता है?
- 9. कूलॉम का नियम लिखिये।
- 10. विद्युत-क्षेत्र का मात्रक लिखिये।
- 11. विद्युत विभव का मात्रक लिखिये।
- 12. विद्युत के चालक के दो उदाहरण दीजिये।
- 13. विद्युत के कुचालक के दो उदाहरण दीजिये।
- 14. विद्युत धारा का मात्रक लिखिये।
- 15. 1 माइक्रो कूलॉम कितने कूलॉम के बराबर होता है?

(92)

विद्युत धारा

विद्युत धारा के स्रोत

आधुनिक जीवन में विद्युत बहुत ही आवश्यक है। घरों, अस्पतालों, कार्यालयों आदि सभी स्थानों पर विद्युत के ढेरों यंत्र लगे होते हैं। विद्युत आपूर्ति बन्द हो जाने पर जीवन अस्त व्यस्त हो जाता है। कई महत्त्वपूर्ण कार्य बाधित हो जाते हैं। आजकल विद्युत जिनत्र (Generator) को विद्युत आपूर्ति के विकल्प के रूप में उपयोग में लाया जा रहा है।

विद्युतथारा दो प्रकार की होती है दिष्ट धारा तथा प्रत्यावर्ती धारा।

- 1. दिष्ट धारा—ऐसी धारा जो केवल एक ही दिशा में प्रवाहित हो, दिष्ट धारा कहलाती है। विद्युत सेल दिष्ट धारा देते हैं। टॉर्च, ट्रॉजिस्अर, कैल्कुलेटर आदि सेल द्वारा (दिष्ट धारा) चलते हैं।
- 2. प्रत्यावर्ती धारा—ऐसी धारा जिसकी परिमाण और दिशा समय के साथ बदलती रहती है तथा एक निश्चित समय के बाद उसी दिशा और परिमाण के साथ पुनरावृत्ति होती है, प्रत्यावर्ती धारा कहलाती है। घरों में पंखा, बल्ब, हीटर, फ्रिज, टेलीविजन आदि प्रत्यावर्ती धारा से ही चलते हैं।

विद्युत धारा के विभिन्न स्रोत क्या है?

विद्युत धारा के विभिन्न स्रोत निम्नलिखित हैं—

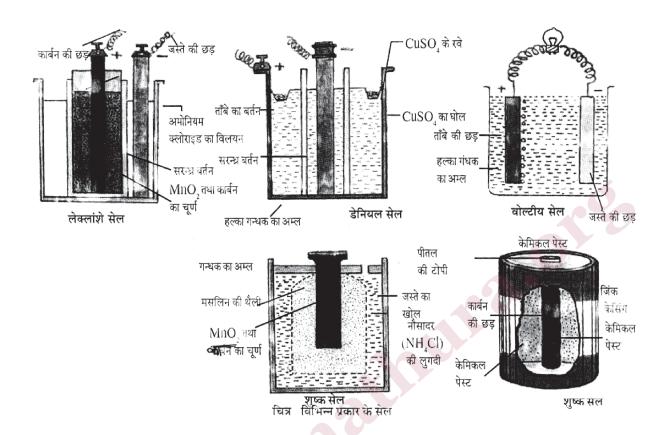
(1) सेल

(2) जनित्र (जनरेटर)।

सेल कितने प्रकार के होते हैं?

सेल दो प्रकार के होते हैं—

(1) प्राथमिक सेल


(2) द्वितीयक सेल।

प्राथमिक सेल (Primary Cell)

इन सेलों द्वारा रासायनिक ऊर्जा को विद्युत ऊर्जा में रूपान्तरित किया जाता है। जैसे—

- (i) लेक्लांशे सेल
- (ii) डेनियल सेल
- (iii) वोल्टीय सेल
- (iv) शुष्क सेल।

(93)

लेक्लांशे सेल एक शीशे का बर्तन है जिसमें अमोनियम क्लोराइड का विलयन भरा होता है। इस विलयन में जस्ते की छड़ तथा एक रन्ध्र युक्त बेलनाकार बर्तन रखा रहता है। बेलनाकार बर्तन में मैगनीज डाई ऑक्साइड तथा कार्बन का चूर्ण भरा होता है तथा इसमें कार्बन की छड़ रखी रहती है। कार्बन की छड़ धन ध्रुव तथा जस्ते की छड़ ऋण ध्रुव का कार्य करती है। इस सेल का विद्युत वाहक बल 1.4 वोल्ट होता है।

शुष्क सेल जिसका प्रयोग आप अपने दैनिक जीवन में विशेष रूप से करते हैं वह लेक्लांशे सेल का संशोधित रूप है।

शुष्क सेल रंगीन मोटे कागज की बेलनाकार आकृति दिखाई देती है, जिसके ऊपरी भाग के मध्य में एक धातु (पीतल) की टोपी लगी है। वृत्ताकार आकृति की पेंदी धातु (जस्ता) की बनी हुई दिखाई देती है।

अब सेल को मध्य से काटकर (तोड़कर) भीतरी भाग का अवलोकन करें। क्या दिखाई देता है?

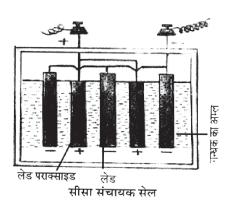
मध्य में कार्बन की छड़, इसके चारों ओर काले रंग का चूर्ण तथा इस चूर्ण के चारों ओर सफेद रंग का चूर्ण धातु (जस्ता के बेलनाकार बर्तन के अन्दर दिखाई देता है।

(94)

* काले एवं सफेद रंग के चूर्ण क्या हैं?

काले रंग का चूर्ण मैगनीज डाई ऑक्साइड (MnO_2) तथा कार्बन के चूर्ण का मिश्रण है। सफेद रंग का चूर्ण अमोनियम क्लोराइड (NH_4Cl) है जो सेल में जलीय पेस्ट के रूप में भरा जाता है। सेल का खुला ऊपरी सिरा चपड़े या पिच से बन्द होता है।

कार्बन की छड़ के ऊपर लगी पीतल की टोपी धन (+) ध्रुव तथा जस्ते से बनी हुई सेल की पेंदी ऋण (-) ध्रुव का कार्य करती है।


इस सेल का अधिकतम विभवान्तर (विद्युत वाहक बल) 1.5 वोल्ट होता है। सेल के विभिन्न रसायनों के बीच होने वाली क्रिया से विद्युत धारा उत्पन्न होती है। इस सेल से थोड़े समय के लिए विद्युत धारा प्राप्त की जा सकती है। डेनियल सेल तथा वोल्टीय सेल की रचना भी जान सकते हैं। इन दोनों सेलों का विद्युत वाहक बल 1.08 वोल्ट होता है।

द्वितीयक सेल

इन सेलों में विद्युत धारा प्रवाहित करके विद्युत ऊर्जा को रासायनिक ऊर्जा में बदला जाता है इसे सेल का आवेशन कहते हैं। सेल को उपयोग में लाने पर पुनः रासायनिक ऊर्जा, विद्युत ऊर्जा में रूपान्तरित होती है। इस क्रिया को सेल का निरावेशन कहते हैं। चूँिक इस सेल को आवेशित करते समय विद्युत ऊर्जा को रासायनिक ऊर्जा के रूप में संचित करते हैं। अतः इन्हें संचायक सेल भी कहते हैं। इस सेल के दो कार्य हैं प्रथम—आवेशित करते समय विद्युत ऊर्जा का रासायनिक ऊर्जा के रूप में संचय द्वितीय कार्य है—सेल का उपयोग करते समय संचित रासायनिक ऊर्जा का पुनः विद्युत ऊर्जा के रूप में रूपान्तरण। इसलिए इसे द्वितीयक सेल कहते हैं। जैसे—सीसा संचायक सेल, नीफे सेल।

सीसा संचायक सेल

संचायक सेल शुष्क सेल की अपेक्षा अधिक समय तक विद्युत धारा प्राप्त करने का स्नोत है। अनावेशित होने पर इसे आवेशित करके प्रयोग में लाया जा सकता है। सीसा संचायक सेल सीसे के एक बर्तन में तनु गंधक का अम्ल लिया जाता है। धनोद लेड पराक्साइड का तथा ऋणोद लेड का होता है। आवेशित होने पर इसका विद्युत वाहक बल 2.2 वोल्ट तथा निरावेशित होने पर 1.8 वोल्ट होता है। निरावेशित होने में सेल को तत्काल आवेशित करना आवश्यक है। संचायक सेलों की श्रेणी क्रम में जोड़कर अधिक विभवान्तर की बैटरियाँ बनाई जाती हैं।

(95)

ऐसी बैटरी का उपयोग कहाँ किया जाता है?

ऐसी बैटरियों का उपयोग आमतौर पर मोटर कार, जीप, ट्रक, बस, रेलगाड़ी, इनवर्टर आदि में किया जाता है।

जनित्र (जनरेटर)

विवाह एवं अन्य समारोहों, कारखानों एवं घरों में विद्युत आपूर्ति न होने की दशा में प्रकाश उत्पन्न करने, पंखा चलाने आदि कार्यों में प्रयुक्त होने वाली विद्युत धारा किस साधन से प्राप्त की जाती है? जिनन्न (जनरेटर) द्वारा विद्युत धारा प्राप्त की जाती है। आइये जानें जनरेटर द्वारा विद्युत धारा कैसे प्राप्त की जाती है?

जब जनरेटर की आरमेचर कुण्डली को चुम्बकीय क्षेत्र में घुमाते हैं तब कुण्डली में विद्युत धारा उत्पन्न हो जाती है, जो स्लिप रिंग तथा कार्बन ब्रुश की सहायता से बाहरी परिपथ में प्रवाहित होने लगती है।

विभिन्न कार्यों के लिए भिन्न-भिन्न क्षमता एवं आकृति के जनरेटर प्रयोग में लाए जाते हैं। जनरेटर चलाने के लिए डीजल, पेट्रोल अथवा मिट्टी का तेल ईंधन के रूप में प्रयोग किया जाता है।

जनरेटर में यांत्रिक ऊर्जा विद्युत ऊर्जा के रूप में परिवर्तित होती है। विद्युत पावर स्टेशनों में विद्युत उत्पादन हेतु बड़े आकार के जनरेटर का उपयोग किया जाता है। पावर स्टेशनों पर जनरेटर को चलाने के लिए जल ऊर्जा अथवा भाप ऊर्जा का उपयोग किया जाता है। विद्युत पावर स्टेशनों से घरों, दुकानों तथा कल-कारखानों तक विद्युत धारा कैसे भेजी जाती है? विद्युत पावर स्टेशनों से उच्च वोल्टता पर एल्यूमीनियम के मोटे तारों द्वारा विद्युत धारा को दूरस्थ स्थित शहरों, कस्बों अथवा ग्रामों के विद्युत वितरण सब स्टेशन पर भेजा जाता है। वहाँ से एल्यूमीनियम के तारों द्वारा ट्राँसफार्मर के माध्यम से 220/440 वोल्टता पर विद्युत धारा घरों, दुकानों एवं कारखानों के मेन्स तक भेजते हैं। यह विद्युत धारा प्रत्यावर्ती धारा होती है।

मेन्स क्या है और इसका प्रयोग कहाँ होता है?

घरों, दुकानों अथवा कारखानों में प्रकाश उत्पन्न करने, कूलर, फ्रिज, टी.वी., पंखों को विद्युत से चलाने हेतु आवश्यकतानुसार विद्युत लाइनें बिछाई जाती है।

ये विद्युत लाइनें साधारणतया कई विद्युत परिपथों में विभाजित होती है। इन विद्युत परिपथों में विद्युत धारा का प्रेषण मेन्स के माध्यम से होता है। मेन्स में एक मेन स्विच होता है, जिसे ऑन करने पर विद्युत धारा प्रवाहित होती है। मेन स्विच ऑफ कर देने पर विद्युत धारा का प्रवाह रुक जाता है। इसी बोर्ड पर एक विद्युत मीटर (ऊर्जा मीटर) लगा होता है। प्रत्येक विद्युत परिपथ के लिए अलग-अलग कट आउट होते हैं। कट आउट में फ्यूज तार लगा होता है।

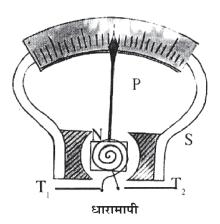
(96)

विद्युत वाहक बल

विद्युत सेल के दोनों ध्रुवों को धातु के तार द्वारा किसी विद्युत परिपथ में जोड़ने पर परिपथ में विद्युत धारा प्रवाहित होने लगती है। फलस्वरूप पूरे विद्युत परिपथ में विद्युत आवेशों का प्रवाह होने लगता है। विद्युत आवेशों के प्रवाह के लिए आवश्यक ऊर्जा विद्युत सेल से प्राप्त होती है।

इस प्रकार विद्युत सेल के सम्पूर्ण परिपथ में एक कूलॉम आवेश प्रवाहित होने के लिए सेल से जो ऊर्जा प्राप्त होती है, उसे सेल का **विद्युत वाहक बल** कहते हैं। विद्युत वाहक बल को E द्वारा प्रदर्शित करते हैं।

सेल का विद्युत वाहक बल (E) = सेल से प्राप्त ऊर्जा (जूल में)/सम्पूर्ण परिपथ में प्रवाहित आवेश (कूलॉम में)

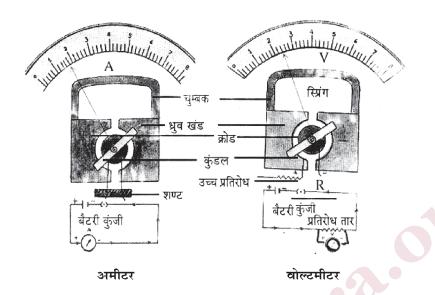

इसका मात्रक जूल/कूलॉम होता है। इसे वोल्ट भी कहते हैं।

विद्युत सेल से विद्युत धारा न लेने की दशा में सेल के धुवों का विभवान्तर अधिकतम होता है, जिसे सेल का विद्युत वाहक बल कहते हैं।

विद्युत यंत्र

धारामापी (Galvanometer)

पृथक्कृत ताँबे के तारों से बनी एक आयताकार कुण्डली दो कीलों की सहायता से एक स्थायी तथा शक्तिशाली नाल चुम्बक के ध्रुवखण्डों N, S के बीच लटकी रहती है। कुण्डली के दोनों सिरे संयोजक पेंचों T_1 तथा T_2 से जुड़े रहते हैं। कुण्डली का विक्षेप पढ़ने के लिए कुण्डली के साथ एक संकेतक P लगा रहता है जो वृत्ताकार पैमाने पर घूमता है। पैमाने का शून्य बीच में होता है।



अमीटर

विद्युत परिपथ में विद्युत धारा की माप के लिए किस उपकरण का प्रयोग किया जाता है? अमीटर का प्रयोग किया जाता है

विद्युत परिपथ में अमीटर को संकेत के रूप में $\frac{+}{\sqrt{A}}$ चिन्ह से व्यक्त करते हैं। अमीटर केथन सिरे (धन टर्मिनल) को सेल अथवा बैटरी के धन ध्रुव से परिपथ में श्रेणीक्रम में जोड़ा

(97)

जाता है। गैलवेनोमीटर के समान्तर क्रम में क्रम प्रतिरोध का तार (शंट) लगाकर अमीटर बनाया जाता है।

वोल्टमीटर

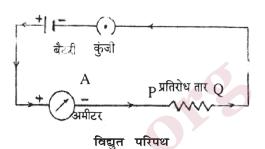
चालक के सिरों के बीच विभवान्तर ज्ञात करने के लिए किस उपकरण का प्रयोग किया जाता है?

विभवान्तर मापन के लिए वोल्टमीटर का उपयोग किया जाता है। विद्युत परिपथ में वोल्टमीटर को संकेत के रूप में $\frac{+}{2}$ $\frac{V}{2}$ व्यक्त करते हैं।

विद्युत परिपथ में जिन दो बिन्दुओं के मध्य विभवान्तर ज्ञात करना होता है, वोल्टमीटर को उन बिन्दुओं के समान्तर क्रम में जोड़ा जाता है। गैलवेनोमीटर के श्रेणीक्रम में उच्च प्रतिरोध लगाकर वोल्टमीटर बनाया जाता है।

कुछ और जानें

- 🔻 एमीटर का प्रतिरोध बहुत कम और वोल्टमीटर का प्रतिरोध बहुत अधिक होता है।
- * आदर्श अमीटर का प्रतिरोध शून्य और आदर्श वोल्टमीटर का प्रतिरोध अनन्त होता है।


प्रतिरोध

जब किसी चालक में विद्युत धारा प्रवाहित होती है तब चालक इसके प्रवाह में रुकावट डालता है। चालक का वह गुण जिसके कारण उसमें प्रवाहित होने वाले आवेश के प्रवाह में अवरोध उत्पन्न

(98)

क्रिया कलाप

श्वेटरी, एमीटर, कुंजी तथा नाइक्रोम का प्रतिरोध तार (20 सेमी. लम्बाई का) को जोड़कर विद्युत परिपथ बनाएँ (चित्र)। अब कुंजी को दबाकर धारा प्रवाहित करें। परिपथ में प्रवाहित धारा का मान अमीटर की सहायता से ज्ञात करें।

अब बिन्दु P, Q के मध्य 40 सेमी. लम्बाई का नाइक्रोम का पतला तार लगाकर धारा का मान नोट करें।

- क्या देखते हैं?
 - धारा का मान कम हो जाता है।
 - अब पहले तार के स्थान पर बिन्दु P, Q के मध्य 40 सेमी. लम्बाई का नाइक्रोम का मोटा तार जोड़ें। परिपथ में धारा प्रवाहित करें तथा एमीटर की सहायता से धारा का मान नोट करें।
- क्या देखते हैं?
 धारा का मान पहले मान की अपेक्षा अधिक हो जाता है। क्यों?
 पतले तार की अपेक्षा मोटे तार का प्रतिरोध कम होने के कारण।
 इस क्रिया कलाप से स्पष्ट है कि

स्थिर ताप पर किसी चालक तार के पदार्थ का प्रतिरोध तार की लम्बाई तथा तार के अनुप्रस्थ काट के क्षेत्रफल पर निर्भर करता है।

किसी निश्चित चालक के लिए चालक के सिरों का विभवान्तर (V) और उससे प्रवाहित धारा (I) का अनुपात स्थिर होता है। इस अनुपात (V/I) को चालक का विद्युत प्रतिरोध (R) कहते हैं।

प्रतिरोध
$$(R) = \frac{\text{विभवान्तर } (V \text{ वोल्ट } \vec{\mathbf{H}})}{\text{धारा } (I \text{ एम्पियर } \vec{\mathbf{H}})}$$

प्रतिरोध का मात्रक 'ओम' होता है। इसे संक्षिप्त रूप में ग्रीक प्रतीक ओमेगा (Ω) से व्यक्त किया जाता है।

(99)

यदि V=1 वोल्ट, I=1 एम्पियर

तो प्रतिरोध
$$R = \frac{1 \text{ aince}}{1 \text{ एम्पियर}} = 1$$
ओम

किसी चालक के सिरों पर 1 वोल्ट विभवान्तर आरोपित करने से चालक में यदि 1 एम्पियर की धारा प्रवाहित हो, तो चालक का प्रतिरोध 1 ओम होगा।

यदि किसी चालक के सिरों का विभवान्तर 6 वोल्ट तथा उससे 2 एम्पियर की धारा प्रवाहित होती है, तो चालक का प्रतिरोध कितना होगा?

हल : चालक का प्रतिरोध
$$=$$
 $\frac{a + a - a}{a + a}$ $=$ $\frac{6 a + a}{2 a + a}$ $=$ $\frac{6 a + a}{2 a + a}$

चालक का प्रतिरोध = 3 ओम

कुछ और भी जानें

चाँदी, ताँबा, एल्युमीनियम, पीतल आदि चालकों का प्रतिरोध बहुत कम होता है। कुछ
 विशेष मिश्र धातुओं जैसे—नाइक्रोम, मैगनिन आदि का प्रतिरोध बहुत अधिक होता है।

प्रतिरोधों का संयोग

प्रयोगात्मक कार्यों में कभी-कभी एक से अधिक वृतिरोधों को जोड़ने की आवश्यकता होती है। यह दो प्रकार से किया जा सकता है—(1) श्रेणीक्रम में तथा (2) समान्तर क्रम में।

यदि किसी परिपथ में किन्हीं दो बिन्दुओं के बीच लगे वह प्रतिरोधों को हटाकर उनके स्थान पर केवल एक ऐसा प्रतिरोध लगा दिया जाये जिससे परिपथ को धारा तथा उन दोनों बिन्दुओं के बीच विभवान्तर के मार्ग में कोई परिवर्तन न हो तो ऐसे प्रतिरोध को तुल्य प्रतिरोध A कहते हैं। श्रेणी तथा समान्तर क्रम में जुड़े प्रतिरोधों का तुल्य-प्रतिरोध निम्न प्रकार ज्ञात किया जाता है।

1. श्रेणी क्रम (In Series)

तीन प्रतिरोधों R_1 , R_2 तथा R_3 को बिन्दु के अनुसार सेल E से जोड़ते हैं। इस संयोग को श्रेणी कम कहते हैं। इस संयोग में सभी प्रतिरोधों में एक ही विद्युत धारा बहती है। परन्तु उनके सिरों के बीच विभवान्तर

(100)

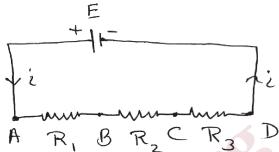
उनके प्रतिरोधों के अनुसार अलग-अलग होते हैं। जो क्रमशः $V_1,\ V_2$ तथा V_3 हैं। प्रतिरोध की परिभाषा के अनुसार—

$$V_i = iR_1, V_2 = iR_2$$
 तथा $V_3 = iR_3$

यदि A व D के बीच विभवान्तर V हो तो

$$V = V_1 + V_2 + V_3$$

या
$$V = iR_1 + iR_i + iR_3$$


या
$$V = i(R_1 + R_2 + R_3)$$

यदि तुल्य प्रतिरोध R हो तो $V = iR_3$

अतः समीकरण (1) व (2) की तुल्य करने पर

$$iR = i(R_1 + R_2 + R_3)$$

या
$$R = R_1 + R_2 + R_3$$

...(2)

2

...(1)

अर्थात् श्रेणीक्रम में जुड़े प्रतिरोधों का तुल्य-प्रतिरोध उन प्रतिरोधों के योग के बराबर होता है।

2. समान्तर क्रम (In Parallel)

तीन प्रतिरोधों R_1 , R_2 तथा R_3 को शिड के अनुसार सेल E से जोड़ते हैं। इस संयोग को समान्तर क्रम कहते हैं। इस संयोग में सभी प्रतिरोधों के सिरों के बीच एक ही विभवान्तर लगता है परन्तु उनमें धारा भिन्न-भिन्न होती है।

यदि सेल द्वारा प्रवाहित धारा i है यह बिन्दु A पर तीन भागों में बँट जाती है। प्रतिरोधों $R_1,\ R_2$ तथा R_3 में क्रमशः $i_1,\ i_2$ तथा i_3 धारायें बहती हैं।

हैं।
$$i=i_1+i_2+i_3$$
 $\ldots(1)$

बिन्दु A व B के बीच विभवान्तर V हो तो

$$i_1 = \frac{V}{R_1}, i_2 = \frac{V}{R_2}$$
 तथा $i_3 = \frac{V}{R_3}$...(2)

٦

यदि A व B बिन्दुओं के बीच तुल्य प्रतिरोध R हो तो

(101)

$$i = \frac{V}{R} \tag{3}$$

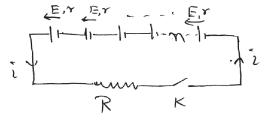
समीकरण (1), (2) व (3) से

$$\frac{V}{R} = \frac{V}{R_1} + \frac{V}{R_2} + \frac{V}{R_3}$$

अर्थात् समान्तर क्रम में जुड़े हुये प्रतिरोधों के तुल्य प्रतिरोध का व्युत्क्रम उन प्रतिरोधों के व्युत्क्रमों के योग के बराबर होता है।

यह भी जानें

हमारे घरों में बिजली के बल्ब, पंखे, हीटर, फ्रिज इत्यादि समान्तर क्रम में ही जुड़े होते हैं।


विद्युत सेलों का संयोजन

प्रशिक्षु जानते हैं कि कई प्रकार के लिखोगे, टार्टी आदि में कई सेलों का उपयोग होता है। सेलों के संयोग को बैटरी कहते हैं। विद्युत सेलों को तीन प्रकार से जोड़ा जा सकता है—(1) श्रेणी क्रम में, (2) समान्तर क्रम में तथा (3) मिश्रित वक्र में।

1. श्रेणी क्रम में-n सेलों को, जिनका सभी विद्युत वाहक बल E तथा आन्तरिक प्रतिरोध R है शिड के अनुसार श्रेणीक्रम में बाह्य प्रतिरोध रिषो जोड़ते है। इस प्रकार से सेलों को जोड़ने पर प्राप्त धारा का मान निम्न सूत्र द्वारा प्राप्त होता है।

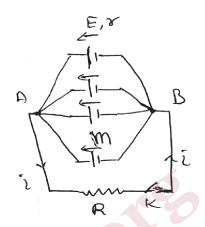
$$i = \frac{nE}{nr + R}$$

$$i=\frac{nE}{nr+R}$$

यदि $nr<< R$ तो $i=\frac{nE}{R}$ (लगभग)

अतः जब सेलों का आन्तरिक प्रतिरोध, बाह्य प्रतिरोध की तुलना में बहुत कम हो तो सेलों को श्रेणीक्रम में जोड़कर अधिक घास प्राप्त की जा सकती है।

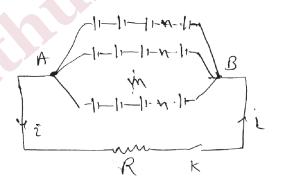
2. समान्तर क्रम में-m सेलों को, जिनका सभी का विद्युत वाहक बल E तथा आन्तरिक प्रतिरोध rहै, चित्रकार अनुसार समान्तर क्रम में बाह्य प्रतिरोध R से जोड़ते हैं।


(102)

इस प्रकार से सेलों को जोड़ने पर प्राप्त धारा निम्न सूत्र द्वारा प्राप्त करते हैं।

$$i = \frac{mE}{r + mR}$$

यदि r>>R अर्थात् सेलों का आन्तरिक प्रतिरोध बाह्य प्रतिरोध की तुलना में बढ़ा दो तब विद्युत धारा


$$i = \frac{mE}{r}$$
 (लगभग)

जब सेलों का आन्तरिक प्रतिरोध बाह्य प्रतिरोध की तुलना में बहुत बड़ा हो तब उन्हे समान्तर क्रम में जोड़ना चाहिये।

3. मिश्रित क्रम—प्रत्येक सेल का विद्युत वाहक बल E तथा आन्तरिक प्रतिरोध r है। चित्र के अनुसार सेलों को मिश्रित क्रम में जोड़ते हैं। इसमें प्रत्येक श्रेणी में n सेल हैं और m पंक्तियाँ गयी हैं। इस प्रकार से सेलों को जोड़ने पर प्राप्त धारा का भाग जिस सूत्र द्वारा प्राप्त किया जाता है।

$$i = \frac{mnE}{nr + mR}$$

मिश्रित क्रम में बाह्य परिपथ में धारा का मान अधिकतम तब होगा जब बैटरी का आन्तरिक प्रतिरोध बाह्य प्रतिरोध के बराबर हो।

अन्य प्रकार की ऊर्जा का विद्युत ऊर्जा में रूपान्तरण

1. सोलर सेल (Solar Cell) : (प्रकाश ऊर्जा का रूपान्तरण)—सूर्य से प्रकाश और ऊष्मा के रूप में पृथ्वी को असीमित ऊर्जा प्राप्त होती है। सौर ऊर्जा का उपयोग विद्युत ऊर्जा के रूप में किया जा रहा है। सोलर सेल अपने ऊपर पड़ने वाली सौर ऊर्जा को विद्युत ऊर्जा में रूपान्तरित कर देता है। इसका उपयोग विशेष रूप से कृत्रिम उपग्रहों में किया जा रहा है। ऐसे विद्युत सेल को जिससे सौर ऊर्जा से विद्युत ऊर्जा प्राप्त होती है, सोलर सेल कहते हैं।

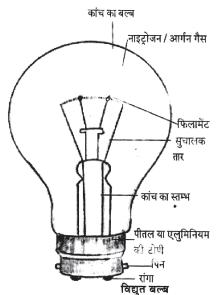
(103)

- 2. पवन ऊर्जा—वायु के गतिशील होने से उत्पन्न गतिज ऊर्जा को विद्युत ऊर्जा में परिवर्तित किया जाता है।
- 3. जल ऊर्जा—बहते हुये जल की गतिज ऊर्जा का विद्युत ऊर्जा में परिवर्तन किया जाता है।
- 4. ज्वार-भाटा ऊर्जा—समुद्र तट पर ज्वार-भाटा में अपार गतिज ऊर्जा होती है। इस ऊर्जा को विद्युत ऊर्जा में बदला जा सकता है।
- 5. **नाभिकीय ऊर्जा**—नाभिक के विखण्डन से प्राप्त ऊर्जा को नाभिकीय ऊर्जा कहते हैं। जिसका उपयोग विद्युत उत्पादन के लिये नाभिकीय पावर प्लांट में किया जाता है।
- 6. जैविक पदार्थ ऊर्जा—जीव जन्तुओं के मलमूत्र, गोबर, कचरा आदि से बायोगैस का उत्पादन किया जाता है।

विद्युत धारा के प्रभाव

विद्युत धारा के प्रभाव निम्नलिखित हैं—

(1) ऊष्मीय प्रभाव:


विद्युत धारा के ऊष्मीय प्रभाव का उपयोग करके अनेक उपयोगी उपकरण बनाए गए हैं, जैसे—विद्युत बल्ब, कपड़ों पर प्रेस करने के लिए विद्युत इस्त्रियाँ (प्रेस), विद्युत अंगीठी, पानी गरम करने की केतली, कमरा गरम करने के लिए हीटर, ब्लोअर टोस्टर, बेकिंग ओवन, बाल सुखाने का यंत्र आदि। हम इन उपकरणों का उपयोग करते हैं।

विद्युत धारा के प्रवाह से किसी चालक में ताप बढ़ने की घटना को विद्युत धारा का ऊष्मीय प्रभाव कहते हैं।

विद्युत बल्ब :

विद्युत धारा के ऊष्मीय प्रभाव का उपयोग विद्युत बल्ब द्वारा प्रकाश उत्पन्न करने में किया जाता है। सामान्य बल्ब में टंगस्टन का बहुत पतला तार लगा होता है, जिसे तन्तु (फिलामेन्ट) कहते हैं।

जब बल्ब के तन्तु में विद्युत धारा प्रवाहित की जाती है तब तन्तु गरम होकर श्वेत तप्त हो जाता है। फलस्वरूप प्रकाश उत्पन्न होता है। तन्तु का गलनांक 3370°C होता है इसलिए यह पिघलता नहीं है।

(104)

(2) चुम्बकीय प्रभाव :

क्रिया कलाप

दो परिनालिका/कुण्डली लेकर उसमें विद्युत धारा प्रवाहित करें।
अब एक कुण्डली के सिरे को दूसरी कुण्डली के सिरे के पास लाएँ।
क्या होता है?
दोनों कुण्डली के मध्य आकर्षण अथवा प्रतिकर्षण होता है। क्यों?
चुम्बकीय प्रभाव के कारण

किसी चालक में धारा प्रवाहित करने पर चालक के चारों ओर चुम्बकीय क्षेत्र उत्पन्न हो जाता है। इस घटना को विद्युत धारा का चुम्बकीय प्रभाव कहते हैं।

धारामापी (गैलवेनोमीटर) की कार्य प्रणाली धारा के चुम्बकीय प्रभाव पर आधारित है।

(3) रासायनिक प्रभाव :

कुछ द्रवों जैसे—नमक का घोल, अम्ल और क्षार का जलीय घोल आदि विद्युत धारा प्रवाहित करने पर वे विघटित हो जाते हैं और उनमें रासायनिक क्रिया होने लगती है। इस घटना को विद्युत धारा का **रासायनिक** प्रभाव कहते हैं।

इस प्रभाव के द्वारा वैद्युत ऊर्जा का रूपान्तरण रासायनिक ऊर्जा में किया जाता है। इसका उपयोग अनेक कार्यों जैसे—विद्युत लेपन, धातुओं के निष्कर्षण तथा शोधन आदि में किया जाता है। वोल्टामीटर की कार्य प्रणाली विद्युत धारा के रासायनिक प्रभाव पर आधारित है।

फ्यूज (Fuse)

जब किसी विद्युत परिपथ में उच्च वोल्टता के कारण प्रबल शक्ति की विद्युत धारा का प्रवाह होता है तो उस विद्युत परिपथ में लगे उपकरण (बल्ब, पंखा, फ्रिज आदि) जलकर खराब हो जाते हैं।

कभी-कभी परिपथ में लगे तारों में आग लग जाने की सम्भावना भी होती है। ऐसी स्थिति में उपकरण को खराब होने से बचाने के लिए क्या किया जाता है?

उपकरणों को खराब होने से बचाने के लिए प्रत्येक विद्युत परिपथ में एक छोटे कम गलनांक वाले मिश्र धातु के तार के टुकड़े का प्रयोग किया जाता है। यह तार का टुकड़ा एक विद्युत रोधी आधार के कट आउट में लगाया जाता है। इस छोटे तार को फ्यूज कहते हैं।

(105)

जब परिपथ में वोल्टता के अधिक होने के फलस्वरूप प्रबल शक्ति की विद्युत धारा बहती है तो फ्यूज स्वयं गरम होकर पिघल जाता है, जिससे विद्युत धारा का प्रवाह रुक जाता है। सामान्य बल्ब तथा पंखे वाले परिपथ में 5 एम्पियर का फ्यूज लगाया जाता है। हीटर, फ्रिज, कूलर आदि अधिक धारा के परिपथ में 10-15 एम्पियर वाला मोटा फ्यूज तार लगाया जाता है। फ्यूज तार टिन तथा सीसा के मिश्र धातु का बना होता है।

फ्यूज तार को लगाना विद्युत परिपथ में सुरक्षात्मक उपाय है।

विद्युत धारा के खतरों से बचाव के लिए निम्नलिखित बातें आवश्यक हैं :

- 1. घरों में अच्छे विद्युत रोधी लेप वाले संयोजक तार लगाए जाएँ।
- 2. विद्युत उपकरण मानक स्तर (आई.एस.आई.) के ही प्रयोग में लाए जाएँ।
- 3. घरों में वायरिंग कराते समय उदासीन तार का सम्बन्ध पृथ्वी (अर्थिंग) से अवश्य किया जाए।
- 4. विद्युत कार्य करते समय रबड़ के दस्ताने पहने जाएँ।
- 5. विद्युत परिपथों में सुरक्षा के दृष्टिकोण से सुरक्षा फ्यूज का प्रयोग अवश्य किया जाना चाहिए।
- 6. किसी प्रकार के खतरे की आशंका होने पर सर्वप्रथम मेन्स का स्विच आफ कर देना चाहिए।
- 7. गीले कपड़ों अथवा गीले हाथों की सहायता से स्विच को स्पर्श नहीं करना चाहिए।

अभ्यास प्रश्न

A. निम्नलिखित प्रश्नों में सही विकल्प छाँटकर अभ्यास पुस्तिका में लिखिए-

- 1. विद्युत धारा का मात्रक होता है—
 - (i) कूलॉम

(ii) वोल्ट

(iii) एम्पियर

- (iv) सेकण्ड
- 2. शुष्क सेल में किस पदार्थ की छड़ ऐनोड का कार्य करती है—
 - (i) कार्बन

(ii) सिलिकान

(iii) जर्मेनियम

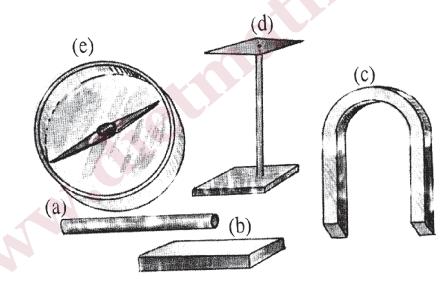
- (iv) बोरान
- 3. किस सेल को पुनः आवेशित किया जा सकता है—
 - (i) सीसा संचायक सेल

(ii) वोल्टीय सेल

(iii) शृष्क सेल

(iv) डेनियल सेल

(106)


4.	वोल्टमीटर के द्वारा मापा जाता है—	
	(i) विद्युत धारा	(ii) दो बिन्दुओं के बीच विभवान्तर
	(iii) विद्युत ऊर्जा	(iv) आवेश
5.	प्रतिरोध का मात्रक होता है—	
	(i) वोल्ट	(ii) ओम
	(iii) एम्पियर	(iv) कोई नहीं
6.	एक चालक में 10 कूलॉम विद्युत आवेश 2 सेकण्ड	तक प्रवाहित किया जाता है। धारा का मान होगा—
	(i) 10 एम्पियर	(ii) 5 एम्पियर
	(iii) 20 एम्पियर	(iv) 12 एम्पियर
7.	लैक्लॉशी सेल में धन विद्युत का काम करती है—	
	(i) कार्बन	(ii) जस्ता
	(iii) लोहा	(iv) गन्धक
В.	लघु उत्तरीय प्रश्न	
8.	सीसा संचायक सेल का वि.वा.ब. कितना होता है?	
9.	दिष्ट धारा किसे कहते हैं?	
10.	किसी चालक के सिरों का विभवान्तर 8 वोल्ट तथा उर	ामें 2 एम्पियर की धारा प्रवाहित हो रही है। चालक
	का प्रतिरोध ज्ञात करिये।	

चुम्बकत्व

चुम्बक के विभिन्न प्रकार

''हम सभी जानते हैं कि पदार्थ लोहे को अपनी ओर आकर्षित करते हैं।''

ऐसे पदार्थ जो लोहे या लोहे से बनी वस्तुओं को अपनी ओर खींचते हैं चुम्बक कहलाते हैं। जो पदार्थ चुम्बक की ओर आकर्षित होते हैं। चुम्बकीय पदार्थ कहलाते हैं। काले रंग का एशिया माइनर के मैगनेशिया नगर में पाया जाने वाला पत्थर लोहे की वस्तुओं को अपनी ओर आकर्षित करता था और गुरुत्वकेन्द्र से स्वतन्त्रता पूर्वक लटकाने पर उत्तर दक्षिण दिशा में स्थिर हो जाता था। शहर के नाम पर इस पत्थर का नाम मैगनेटाइट पड़ा। अंग्रेजी में इसे मैगनेट तथा हिन्दी में चुम्बक कहते हैं। प्रकृति में पाये जाने वाले इस प्रकार के चुम्बक को प्राकृतिक चुम्बक कहते हैं। आवश्यकतानुसार बाद में विभिन्न प्रकार के कृत्रिम चुम्बक बनाये गये जैसे दण्ड चुम्बक, नाल चुम्बक, चुम्बकीय सुई, चुम्बकीय कम्पस आदि शक्तिशाली चुम्बक कोबाल्ट, निकिल के बनाये जाते हैं। इनमें उत्तर दिशा प्रदर्शित करने वाले सिरे पर N तथा दक्षिण दिशा प्रदर्शित करने वाले सिरे पर S अंकित होता है।

विभिन्न प्रकार के चुम्बक

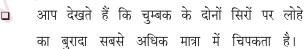
चुम्बक के गुण

क्रिया कलाप

प्लास्टिक अथवा कागज का एक प्याला लीजिए। इसे एक स्टैंड पर क्लेंप की सहायता से कस दीजिए। प्याले के अन्दर एक चुम्बक रखिए तथा इसे कागज से ढक दीजिए, जिससे कि चुम्बक दिखाई न दे। लोहे

(108)

के बने एक क्लिप को एक धार्ग से बाँधिए। धार्ग के दूसरे सिरे को स्टैंड के आधार के साथ बाँध दीजिए। क्लिप को प्याले के आधार के समीप लाइए। क्लिप बिना किसी सहारे के एक पतंग की भाँति हवा में रुका रहता है, क्यों? प्याले के अन्दर उपस्थित चुम्बक लोहे के क्लिप को अपनी ओर खींचता है।

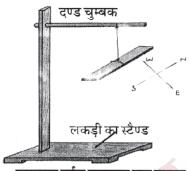

क्रिया कलाप

- विभिन्न प्रकार की वस्तुएँ जैसे—पेंसिल, रबर, ताँबा, पीतल
 के छोटे टुकड़े, पिन, सिलाई सूई, बोर्ड पिन, लोहे के
 छीलन लें।
- Typaa an yhia
- एक चुम्बक को लेकर बारी-बारी से प्रत्येक वस्तु के पास ले जाएँ। क्या होता है?
- आप पाते हैं िक पिन, सूई (सिलाई), बोर्ड पिन तथा लोहे के छोटे टुकड़े चुम्बक की ओर आकर्षित हो जाते हैं।
- पेंसिल, रबर, ताँबा एवं पीतल के टुकड़े आकर्षित नहीं होते हैं। क्यों?

चुम्बक जिन पदार्थों को अपनी ओर आकर्षित करते हैं उन्हें चुम्बकीय पदार्थ कहते हैं। जो पदार्थ चुम्बक की ओर आकर्षित नहीं होते उन्हें अचुम्बकीय पदार्थ कहते हैं। इस क्रिया कलाप से यह निष्कर्ष निकलता है कि पिन, सूई (सिलाई) बोर्ड पिन तथा लोहे के छोटे-छोटे टुकड़े चुम्बकीय पदार्थ हैं तथा पेंसिल, रबर, ताँबा एवं पीतल अचुम्बकीय पदार्थ हैं।

क्रिया कलाप

- एक कागज पर लोहे का बुरादा
 लेकर फैला दें।
- एक छड़ चुम्बक को लोहे के बुरादे पर ले जाकर चारों ओर घुमाएँ। क्या देखते हैं?


क्या निष्कर्ष निकलता है?

चुम्बक के सिरों पर आकर्षण बल सबसे अधिक होता है। क्रिया कलाप

🗆 एक चुम्बक लेकर लटकाएँ।

- आप क्या देखते हैं?
- चुम्बक के सिरे उत्तर-दक्षिण दिशा की ओर स्थिर हो जाते
 हैं।
- अब इसे हाथ से पकड़कर घुमाकर छोड़ दें। क्या होता है?
- आप देखते हैं कि कुछ समय पश्चात् चुम्बक के सिरे पुनः
 उत्तर-दक्षिण दिशा की ओर स्थिर हो जाते हैं।
- क्या निष्कर्ष निकलता है?

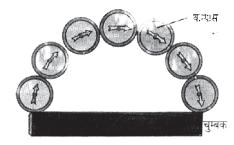
स्वतन्त्रता पूर्वक लटकाया गया चुम्बक

मध्य बिन्दु (गुरुत्व केन्द्र) से स्वतन्त्रता पूर्वक लटकाए गए चुम्बक के सिरे सदैव उत्तर-दक्षिण दिशा में स्थिर हो जाते हैं। यह चुम्बक का दैशिक (दिशा बताने वाला) गुण है।

क्रिया कलाप

- एक चुम्बकीय सूई तथा एक छड़ चुम्बक लें।
- चुम्बकीय सूई के उत्तरी ध्रुव के पास छोड़ चुम्बक का उत्तरी ध्रुव ले जायें। (चित्र) क्या होता है? सूई का उत्तरी ध्रुव प्रतिकर्षित हो जाता है।
- अब चुम्बक का दक्षिणी ध्रुव सूई के उत्तरी ध्रुव के पास लाएँ। क्या होता है? सूई का उत्तरी ध्रुव आकर्षित हो जाता है (चित्र)।
- क्या निष्कर्ष निकलता है?

चुम्बक के असमान धुवों में आकर्षण होता है। चुम्बक के समान धुवों में प्रतिकर्षण होता है।


- च चुम्बक में दैशिक गुण होता है अर्थात् स्वतंत्रता पूर्वक लटकाये जाने पर चुम्बक का उत्तरी ध्रुव सदैव उत्तर की ओर तथा दक्षिणी ध्रुव सदैव दक्षिण की ओर रहता है।
- 🛘 चुम्बक लौह चुम्बकीय पदार्थों को अपनी ओर खींचता है।
- 🗖 चुम्बक के असमान ध्रुवों में आकर्षण तथा समान ध्रुवों में प्रतिकर्षण होता है।

(110)

चुम्बकीय क्षेत्र

क्रिया कलाप

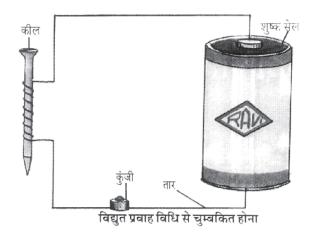
- □ एक छड़ चुम्बक मेज पर रखें।
- 🗅 इसके पास चुम्बकीय कम्पास लाएँ।
- □ क्या होता है?

चुम्बकीय क्षेत्र

- 🛘 सूई विक्षेपित होकर एक निश्चित दिशा में आकर स्थिर हो जाती है।
- □ कम्पास को चुम्बक के चारों ओर के स्थान में ले जाकर चुम्बकीय प्रभाव देखें। धीरे-धीरे इसे चुम्बक से दूर करते जाएँ। क्या होता है?

कुछ दूरी के बाद कम्पास सूई पर चुम्बक का कोई प्रभाव होता है।

चुम्बक के चारों ओर का वह क्षेत्र जिसमें चुम्बकीय प्रभाव का अनुभव होता है, चुम्बकीय क्षेत्र कहलाता है। चुम्बक का चुम्बकीय क्षेत्र उसके धुवों की प्रबलता तथा उसके प्रेक्षक की दूरी पर निर्भर करता है।


यह भी जानें :

- 1. चुम्बक के ध्रुवों को एक दूसरे से अलग नहीं किया जा सकता है।
- 2. चुम्बक का निश्चित परीक्षण प्रतिकर्षण से होता है।

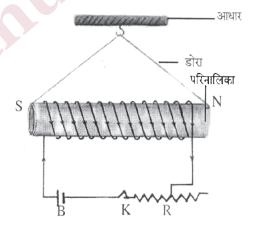
विद्युत चुम्बक

क्रिया कलाप

- 🗖 लोहे की एक कील लें।
- इस पर धागा लिपटा हुआ (इन्सुलेटेड)
 ताँबे का तार लपेट लें।
- तार के सिरों को शुष्क सेल से जोड़ कर
 विद्युत धारा प्रवाहित करें।
- कील के सिरों को लोहे की छीलन या
 आलिपन के पास ले जाएँ।
- क्या होता है?
 लोहे की छीलन या आलिपन इसके सिरे
 पर चिपक जाती है। क्यों?

(111)

लोहे की कील विद्युत धारा के प्रभाव से चुम्बिकत हो जाती है। इस प्रकार के चुम्बक को विद्युत चुम्बक कहते हैं।


- अब तार में विद्युत धारा बन्द कर दें।
- क्या होता है?
- कील के सिरों पर छीलन या आलिपन नहीं चिपकती है।
- च क्या निष्कर्ष निकलता है?

विद्युत धारा बन्द कर देने पर कील का चुम्बकत्व समाप्त हो जाता है।

क्या धारावाही परिनालिका चुम्बक की भाँति व्यवहार करती है?

क्रिया कलाप

- ם धागा लिपटा या एनेमिल किया हुआ ताँबे का तार लें।
- □ इसे किसी गत्ता, मोटा कागज या प्लास्टिक (अन्य कुचालक) पदार्थ के खोखले बेलन पर (जिसका व्यास लम्बाई में कम है लपेटें) इस प्रबन्ध को परिनालिका कहते हैं।
- □ इसके तार के सिरों को चित्रानुसार शुष्क सेल (B), कुंजी (K) तथा धारा नियन्त्रक (R) से जोड़ दें।
- परिनालिका को इसके गुरुत्व केन्द्र (मध्य) से ऐंठन
 रिहत धागे से बाँध कर स्वतन्त्रतापूर्वक लटकाएँ।
- अब परिनालिका में विद्युत धारा प्रवाहित करें क्या होता है?
 - विद्युत धारा प्रवाहित करने पर परिनालिका उत्तर-दक्षिण दिशा में स्थिर हो जाती है। क्यों? परिनालिका एक चुम्बक की भाँति व्यवहार करती है। अब इस परिनालिका के किसी एक सिरे पर छड़ चुम्बक का उत्तरी ध्रुव ले जाएँ। यदि परिनालिका का सिरा चुम्बक के सिरे से आकर्षित होता है तो परिनालिका का यह सिरा दक्षिणी ध्रुव तथा प्रतिकर्षित होने पर यह सिरा उत्तरी ध्रुवी होता है।
- परिनालिका में विद्युत की दिशा बदल कर छड़ चुम्बक से इसके सिरों का परीक्षण करें।
 परिनालिका में विद्युत धारा की दिशा बदलने पर उसके सिरों के ध्रुव की प्रकृति बदल जाती है।
 क्या निष्कर्ष निकलता है?

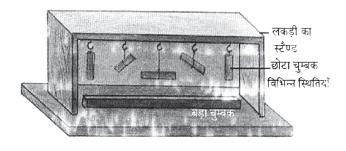
धारावाही परिनालिका एक चुम्बक की भाँति व्यवहार करती है, जिसका एक सिरा उत्तरी ध्रुव (N) तथा दूसरा सिरा दक्षिणी ध्रुव (S) की तरह व्यवहार करता है।

□ परिनालिका में ध्रुव का निर्धारण विद्युत धारा के प्रवाह की दिशा के आधार पर होता है। धारावाही परिनालिका के जिस सिरे पर धारा वामावर्त (घड़ी की सूइयों के विपरीत) होती है उस सिरे पर उत्तरी ध्रुव N तथा जिस सिरे पर दक्षिणावर्त दिशा (घड़ी की सूइयों की दिशा में) में प्रवाहित होती है उस सिरे पर दक्षिणी ध्रुव S बनता है।

चुम्बक का उपयोग

- टेलीग्राफ एवं टेलीफोन यंत्रों में उपयोग किया जाता है।
- विद्युत मोटर जिनका उपयोग विद्युत यंत्रों जैसे पंखा, कपड़ा धोने की मशीन आदि में किया जाता
 है।
- विद्युत घंटी एवं लाउड स्पीकर में।
- कल-कारखानों में भारी स्टील एवं लोहे के टुकड़ों/सामानों को उठाकर एक स्थान से दूसरे स्थान तक पहुँचाने में।
- शरीर के घाव एवं आँख में पड़े लोहे के छोटे-छोटे कणों को निकालने में डॉक्टर इसका उपयोग करते हैं।

पृथ्वी का चुम्बकीय व्यवहार


क्रिया कलाप

लगभग 15cm लम्बाई का एक चुम्बक तथा एक छोटा 5cm लम्बाई का छोटा चुम्बक लेकर चित्रानुसार बड़े चुम्बक के ऊपर छोटे चुम्बक को विभिन्न स्थितियों के अनुसार लटकाएँ। क्या देखते हैं?

पहली एवं पाँचवीं स्थिति में छोटा चुम्बक ऊर्ध्व तल में, तीसरी स्थिति में क्षैतिज तल में, दूसरी एवं चौथी स्थिति में क्षैतिज तल के साथ किसी निश्चित कोण पर झुका हुआ दिखाई देता है।

जब स्वतन्त्रतापूर्वक लटके हुए किसी बड़े चुम्बक को पृथ्वी तल पर उत्तरी गोलार्द्ध से दक्षिणी गोलार्द्ध की ओर ले जाते हैं, तब दण्ड चुम्बक उसी भाँति व्यवहार करता है जैसा कि बड़े चुम्बक के ऊपर छोटा चुम्बक व्यवहार करता है। इससे क्या निष्कर्ष निकलता है?

पृथ्वी, चुम्बक की भाँति व्यवहार करती है।

(113)

अभ्यास प्रश्न

A. सही विकल्प चुनकर उत्तर दें-

- 1. चुम्बकीय पदार्थ है—
 - (a) लोहा

(b) खड़

(c) ताँबा

(d) पीतल

- 2. चुम्बक का आकर्षण बल सबसे अधिक होता है—
 - (a) चुम्बक के मध्य बिन्दु पर

(b) चुम्बक के दोनों सिरों पर

(c) चुम्बक के किसी एक सिरे पर

- (d) चुम्बक के सिरों से कुछ दूरी पर
- 3. निम्नलिखित में से किसमें विद्युत चुम्बक का उपयोग नहीं होता है?
 - (a) पंखा

(b) विद्युत घंटी

(c) टेलीफोन

- (d) विद्युत हीटर
- 4. चुम्बकीय प्रभाव आर-पार नहीं निकल पाता है—
 - (a) लोहे की चादर से

(b) काँच की पट्टी से

(c) लकड़ी के तख्ते से

- (d) कागज से
- 5. निम्नलिखित में से कौन-सा कथन सही है?
 - (a) चुम्बक के समान ध्रुवों में आकर्षण होता है।
 - (b) चुम्बक के ध्रुवों को एक दूसरे से अलग कर सकते हैं।
 - (c) पृथ्वी चुम्बक की भाँति व्यवहार करती है।
 - (d) चुम्बक का सही परीक्षण आकर्षण है।

B. लघु उत्तरीय प्रश्न

- 6. चुम्बक को मैगनेट क्यों कहते हैं?
- 7. चुम्बकीय क्षेत्र से क्या अभिप्राय है?
- 8. चुम्बक का कोई तीन उपयोग लिखिए।
- 9. धारावाही परिनालिका में चुम्बकीय ध्रुवों का निर्धारण कैसे किया जाता है?
- 10. चुम्बक के चुम्बकत्व को बनाये रखने के लिए कौन-कौन सी सावधानियाँ बरतनी चाहिए।

(114)

इकाई-5

रक्त की संरचना, रक्त वर्ग रक्त बैंक, रक्त आधान एवं सावधानियाँ

इस इकाई का अध्ययन करने पर निम्नलिखित की जानकारी होगी-

- * रुधिर (रक्त) की संरचना
- * रुधिर वर्ग तथा रुधिर बैंक (ब्लड बैंक)
- रुधिर का आधान एवं सावधानियाँ

क्रिया विधि

प्रशिक्षक प्रशिक्षणार्थियों से प्रश्न करेगा-

- शरीर पर खरोंच लगने या चोट लगने पर क्या होता है?
- * रक्त किन जन्तुओं में पाया जाता है?
- * कुछ अंकशेरूकीय जन्तुओं में पाये जाने वाला रक्त किस रंग का होता है?
- * रक्त की संरचना कैसी होती है?
- * ये शरीर में कहाँ पाया जाता है?

शरीर पर खरोंच लगने या कहीं पर कट जाने से लाल रंग का बहने वाला तरल पदार्थ आपने देखा होगा। यह रूधिर या रक्त होता है। रक्त सभी कशेरूकीय जन्तुओं में पाया जाता है। जैसे-मछली, मेढक, छिपकली, चिड़ियों तथा बकरी या मनुष्य। कुछ अकशेरूकीय जन्तुओं में भी रक्त पाया जाता है परन्तु वह लाल रंग का न होकर रंगहीन या अन्य रंगों का होता है क्या आपने केचुआ, घोंघा में लाल रक्त देखा है? रक्त की संरचना कैसी होती है? रक्त क्या है, शरीर में कहाँ पाया जाता है और इसका मानव के लिए क्या महत्त्व है? आइये इसके बारे में जानकारी प्राप्त करते हैं।

मनुष्य का रुधिर (Human Blood)

स्थिति (Position)

पृष्ठवंशियों कशेरुकीय (chordates) में और अपृष्ठवंशियों अकशेरुकीय (nonchordates) में से ऐनेलिडा में रुधिर लाल, जल से कुछ भारी (घनत्व—1.04 से 1.07), चिपचिपा-सा (श्यानता जल से लगभग 5 गुणा अधिक), स्वाद में नमकीन-सा, कुछ क्षारीय (alkaline—pH 7.3 to 7.5) और अपारदर्शी (opaque) होता है। यह रुधिरवाहिनियों एवं हृदय में होकर पूर्ण शरीर में निरन्तर परिक्रमा करता रहता है। इसीलिए, पूरे शरीर में मोटी और महीन रुधिरवाहिनियों का घना जाल फैला होता है।

(115)

हृदय रुधिर को एक प्रकार की रुधिरवाहिनियों में पम्प करता रहता है और दूसरे प्रकार की रुधिरवाहिनियाँ इस रुधिर को वापस हृदय में लाती रहती हैं। मानव शरीर में रुधिर की मात्रा शरीर के भार का लगभग 7 से 8% होती है। अतः एक 70 किलोग्राम के मानव शरीर में औसतन 5 से 6 लीटर रुधिर होता है। यह शरीर का 1/13वाँ भाग रहता है। स्त्रियों में रुधिर की मात्रा लगभग 20 से 25% कम (लगभग 4 से 5 लीटर) होती है।

रुधिर या रक्त की संरचना

क्रिया विधि—

प्रशिक्षक मनुष्य के रक्त की तैयार स्लाइड को सूक्ष्मदर्शी द्वारा छात्रों को निरीक्षण करने के लिए कहेगा।

रुधिर की संरचना

क्रिया कलाप

मनुष्य के रक्त की तैयार स्लाइड का सूक्ष्मदर्शी द्वारा शिक्षक की सहायता से निरीक्षण करें। क्या देखते हैं?

मनुष्य के रुधिर में दो भाग होते हैं-

- (1) रिधिर कणिकायें
- (2) प्लाज्मा।

1. रुधिर कणिकायें

रुधिर का लगभग 40% भाग इनसे बनता है। ये तीन प्रकार की होती हैं-

- (i) लाल रुधिर कणिकायें
- (ii) श्वेत रुधिर कणिकायें
- (iii) रुधिर प्लेटलेट्स।

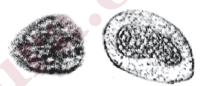
(1) लाल रुधिर कणिकायें

(Red Blood Corpuscles Uee R.B.C.)

उपरोक्त स्लाइड के अध्ययन में आपने देखा होगा कि कुछ रुधिर कणिकायें गोल, तश्तरीनुमा तथा दोनों ओर से पिचकी (उभयावतल) हैं। ये लाल रक्त कणिकायें हैं। ये समस्त रक्त

सूक्ष्मदर्शी से दिखायी देती मनुष्य

के रेंक्त की कणिकाएँ


रुधिर

कणिकाओं का 90% होती हैं। प्रत्येक लाल रुधिर कणिका प्लाज्मा झिल्ली जीवकला के आवरण से ढकी होती है और केन्द्रक विहीन होती है। रक्त का रंग लाल क्यों होता है? इसमें हीमोग्लोबिन नामक रंगयुक्त प्रोटीन होती है। ये रक्त को लाल रंग प्रदान करती हैं। लाल रुधिर कणिकायें शरीर में अस्थियों की अस्थि मज्जा में बनती है। भ्रूण में ये कणिकायें यकृत तथा प्लीहा में बनती है।

लाल रुधिर कणिका के कार्य—अवगत है कि मानव शरीर में ऑक्सीजन तथा कार्बन डाई ऑक्साइड गैसों का कोशिकाओं तक आदान-प्रदान रक्त के द्वारा होता है। रक्त की लाल रक्त कणिकायें ही ऑक्सीजन तथा कार्बनडाई ऑक्साइड से बन्ध बनाकर उनका परिवहन करती है।

(2) श्वेत रुधिर कणिकायें (White Blood Corpuscles Uee W.B.C.)

अपने स्लाइड में लाल रुधिर कणिकाओं की अपेक्षा बड़ी तथा केन्द्रक युक्त कणिकायें भी देखी होंगी। ये श्वेत रुधिर कणिकायें होती हैं। श्वेत रुधिर कणिकायें अमीबा के समान अनियमित आकार की होती हैं। इनमें कोई वर्णक नहीं होता है इसीलिए ये रंगहीन होती हैं। ये प्लीहा में बनती हैं। इनका जीवनकाल 1 से 4 दिन तक का होता है। ये कणिका कई प्रकार की होती है।

मनुष्य की कुछ श्वेत रुधिर कणिकायें

श्वेत रुधिर कणिकाओं के कार्य—

- शरीर को जब भी कोई रोगाणु या दूसरा परजीवी प्रभावित करता है तो श्वेत रुधिर किणकाओं
 की संख्या में वृद्धि हो जाती हैं। ये प्रतिरक्षा का काय्र करती हैं। जिससे शरीर में रोग
 उत्पन्न न हो या उसका प्रभाव कम हो जाय।
- श्वेत रुधिर कणिकायें शरीर में अशक्त तथा टूटी हुई कोशिकाओं का भक्षण कर रुधिर की सफाई करती हैं।

(3) रुधिर प्लेटलेट्स या थ्रॉम्बोसाइट्स

(Blood Platelets or Thrombocytes)

ये केवल स्तिनयों के रुधिर में होती हैं। मनुष्यों में नइकी संख्या 2 से 5 लाख प्रित क्यूबिक मिमी रुधिर होती है। ये अतिसूक्ष्म (2 से 4μ व्यास की), केन्द्रकिवीन तथा संकुचनशील, गोल या अण्डकार-सी, उभयोत्तल, तश्तरीनुमा होती हैं। वास्तव में, ये पूर्ण कोशिकाएँ नहीं, वरन् अस्थि मज्जा की कुछ कोशिकाओं (मगाकैरिओसाइट्स—megakaryocytes) के विखण्डन से बने टुकड़ों के रूप में होती हैं। इनका लगभग 50% अंश पेशियों की एक्टोमाइसिन (actomysin) जैसी थ्रॉम्बोस्थिनन

(117)

(thrombosthinin) नामक एक संकुचन प्रोटीन का, 15% अंश वसाओं का तथा शेष अंश एन्जाइमों का बना होता है। इनका प्रमुख कार्य रुधिर के स्कंदन (clotting) में सहायता करना होता है।

चोट या घाव पर फटी हुई रुधिरवाहिनी या केशिका (capillary) से ज्योंही रुधिर प्लेटलेट्स निकलकर बाहरी वायु या पदार्थों के संसर्ग में आती हैं, ये स्वयं टूटकर रुधिर के जमने में सहायता करती हैं। इससे रुधिरवाहिनी के कटे सिरे पर रुधिरस्नाव रुक जाता है। शरीर में किसी अन्य कारण से यदि किसी रुधिरवाहिनी से किसी स्थन पर रुधिर रिसने लगता है तो प्लेटलेट्स परस्पर चिपककर, डाट (plug) की भाँति, इस स्थान को बन्द कर देती हैं। ऐसी डाट को थ्रॉम्बस (thrombus) कहते हैं। कभी-कभी थ्रॉम्बस इतना बड़ा हो जाता है कि इससे महीन केशिका में रुधिर का बहाव ही अवरुद्ध हो जाता है। रुधिर स्कन्दन या थ्रॉम्बस द्वारा रुधिरस्नाव को रोकने की प्रक्रिया को हीमोस्टैसिस (haemostasis) कहते हैं।

रुधिराणुओं का जीवनकाल (Life Span of Blood Corpuscles)

रुधिराणु अपनी मरम्मत एवं वृद्धि नहीं कर सकते। अतः इनका जीवन अल्पकालीन होता है। तीव्र गित से पूर्ण शरीर में प्रसारित होते रहने के कारण शीघ्र क्षीण हो जाते हैं। अतः महीन रुधिर केशिकाओं (blood capillaries) में से गुज़रते समय, या किणकापारण (diapedesis) के समय, ये प्रायः टूट जाते हैं। लाल रुधिराणुओं का जीवनकाल औसतन 120 दिन का होता है। किणकामय श्वेत रुधिराणु रुधिर में मुश्किल से एक से चार दिनों तक जीवित रहते हैं। किणकाविहीन श्वेत रुधिराणुओं में से कुछ कई दिनों तक और कुछ कई महीनों तक जीवित रहते हैं। रुधिर प्लेटलेट्स तथा स्पिण्डल कोशिकाओं का जीवनकाल मुश्किल से एक से 8-10 दिन तक होता है।

कुछ और भी जानें

- पुरुषों के एक धन मिमी. रक्त में R.B.C. की संख्या 55 तथा स्त्रियों में 45 से 50 लाख होती है।
- े लाल रुधिर कणिका का जीवन काल अधिकतम 127 दिन का होता है।
- मनुष्य के एक धन मिमी रक्त में W.B.C. की संख्या 5000 से 9000 तक होती है।
- ऊँट के रुधिर में लाल रुधिर कणिकायें अण्डाकार तथा केन्द्रक युक्त होती हैं।
- डेंगू रोग का नाम आजकल काफी चर्चित है जो विशेष जाति के मच्छर के काटने से होता है। प्लेटलेट्स की संख्या इस रोग में कम होने लगती है। इनकी संख्या की जानकारी से इस रोग का पता लगता है।

(118)

इसे भी जानें

रुधिर की उत्पत्ति भ्रूण की मीसोडर्स से होती है। अतः मूलतः यह एक तरल संयोजी ऊतक (intercellular matrix or ground fluid) होता है। इसके निम्नलिखित चार विशिष्ट लक्षण होते हैं—

- (1) इसमें बाह्यकोशिकीय पदार्थ (matrix) प्लाज्मा (plasma) नामक तरल होता है।
- (2) प्लाज्मा में कई प्रकार की अनेक कोशिकाएँ होती हैं और एक विशेष प्रकार की कोशिकाओं के अनेक छोटे-छोटे दुकड़े (cell fragments) होते हैं। इन सबको रुधिराणु (blood corpuscles) कहते हैं।
- (3) प्लाज्मा में तन्तु (fibres) बिल्कुल नहीं होते।
- (4) प्लाज्मा का स्नावण रुधिराणु नहीं करते। रुधिर तथा इसके उत्पादक ऊतकों और इनकी अनियमितताओं के अध्ययन की शाखा को रुधिर विज्ञान या हीमैटोलोजी (Hematology) कहते हैं।

रुधिर का प्लाज्मा या प्लाविका (Plasma of Blood)

यह रुधिर का, हल्के पीले रंग का और हल्का-सा क्षारीय, साफ, पारदर्शक एवं निर्जीव आन्तरकोशिकीय मैट्रिक्स या आधारभूत तरल (intercellular matrix or ground fluid) होता है। यह रुधिर का लगभग 55% भाग (शरीर के भार का 5% अर्थात् 70 kg मनुष्य में लगभग 3.5 लीटर) बनाता है। इसमें लगभग 91% जल होता है। शेष 9% भाग में कई प्रकार के अकार्बनिक और कार्बनिक पदार्थ होते हैं। इस प्रकार, प्लाज्मा पदार्थों का एक जटिल मिश्रण होता है। इसके अकार्बनिक पदार्थों में सोडियम क्लोराइड और सोडियम बाइकार्बोनेट लवण प्रमुख तथा कैल्सियम, मैग्नीशियम एवं पोटैशियम आदि के फॉस्फेट, सल्फेट, बाइकार्बोनेट तथा आयोडाइड आदि लवण सूक्ष्म मात्रा में होते हैं। सब लवण मिलकर ज्लाज्मा का लगभग 0.9% भाग बनाते हैं। ये आयनों (ions) के रूप में होते हैं। इन्हीं के कारण रुधिर हल्का क्षारीय होता है। तन्त्रिकाओं, पेशियों तथा अन्य ऊतकों की सुचारु कार्यिकी के लिए रुधिर में इन लवणों के आयनों का उचित मात्रा में उपस्थित रहना बहुत आवश्यक होता है।

आइये प्लाज्मा के बारे में और जानें—

प्लाज्मा के कार्बनिक पदार्थ कुछ तो इसके घटक (constituents) होते हैं और कुछ वे जिनका यह संवहन करता है। ये सब निम्नलिखित होते हैं—

1. प्लाज्मा प्रोटीन्स (Plasma Proteins)—प्लाज्मा में इनकी मात्रा 7 से 8% (लगभग 300 ग्राम) होती है। इनमें ऐल्बूमिन्स (albumins) ग्लोब्यूलिन्स (globulins) प्रोथ्रॉम्बिन

(119)

(prothrombin) तथा फाइब्रिनोजन (fibrinogen) प्रमुख होती हैं। ये यकृत में बनकर रुधिर में मुक्त होती हैं। प्रोथॉम्बिन एवं फाइब्रिनोजन प्लाज्मा प्रोटीन्स का 4% अंश बनाती हैं और रुधिर के स्कंदन (clotting) में भाग लेती हैं। ऐल्बूमिन सबसे छोटी, परन्तु सबसे अधिक (प्लाज्मा प्रोटीन्स की लगभग 55%) प्लाज्मा प्रोटीन्स होती है। ये परासरणी दाब को बनाए रखती हैं। कुछ ग्लोब्यूलिन्स प्रतिरक्षी (immunoglobulins) होती हैं। इन्हें गामा ग्लोब्यूलिन्स (gamma globulins) कहते हैं। ये संक्रमण रोगी से शरीर की सुरक्षा करने का नाम करती हैं। अतः इन्हें प्रतिरक्षी (antibody) प्रोटीन्स भी कहते हैं। कुछ उत्प्रेरक प्रोटीन्स अर्थात् एन्जाइम्स (enzymes) भी प्लाज्मा में होते हैं।

- 2. पचे हुए पोषक पदार्थ—इनमें ग्लूकोस, वसा, वसीय अम्ल, ग्लिसरॉल, न्यूक्लिओसाइड्स, ऐमीनो अम्ल, विटामिन्स, फास्फोलिपिड्, कोलेस्ट्रॉल आदि होते हैं जिन्हें शरीर की सारी कोशिकाएँ आवश्यकतानुसार रुधिर से लेती रहती हैं।
- 3. उत्सर्जी पदार्थ—इनमें शरीर की समस्त कोशिकाओं द्वारा विसर्जित की गई अमोनिया तथा मुख्यतः यकृत कोशिकाओं द्वारा विसर्जित किए गए यूरिया, यूरिक अम्ल, क्रिटीन, क्रिटिनीन आदि होते हैं जिन्हें रुधिर से वृक्क ग्रहण करते रहते हैं। वृक्कों की कार्यिकी में अनियमितता के कारण रुधिर में यूरिया की मात्रा अत्यधिक बढ़ सकती है। इस दशा को यूरीमिया (uremia) कहते हैं।
- 4. हॉरमोन्स (Hormones)—ये अन्तःस्रावी ग्रन्थियों द्वारा ऊतक द्रव्य में स्रावित होकर सीधे रुधिर में पहुँचते हैं और रुधिर के माध्यम से सारे शरीर में संचरित होते हैं। शरीर की कोशिकाएँ फिर इन्हें रुधिर से ग्रहण करती हैं।
- 5. **घुली गैसें** प्लाज्मा में प्रति 100 मिली जल में लगभग 0.29 मिली ऑक्सीजन (O_2) , 0.5 मिली नाइट्रोजन (N_2) तथा 0.5 मिली कार्बन डाइऑक्साइड (CO_2) गैसें घुली रहती हैं।
- 6. सुरक्षात्मक पदार्थ (Defensive Compounds)—प्लाज्मा की कुछ ग्लोब्यूलिन प्रोटीन्स इम्यूनोग्लोब्यूलिन्स या प्रतिरक्षी पदार्थ (immunoglobulins or antibodies) कहलाती है। लाइसोजाइम (lysozyme—एक पोलीसैकेराइड), प्रोपरडिन (properdin) प्रोटीन आदि, उन जीवाणुओं (bacteria), विषाणुओं (viruses) तथा हानिकारक पदार्थों को नष्ट करते हैं जो किसी प्रकार शरीर के अन्तःवातावरण में पहुँच जाते हैं।
- 7. प्रतिजामन (Anticogulant)—संयोजी ऊतकों की मास्ट कोशिकाएँ रुधिर के प्लाज्मा में निरन्तर हिपैरिन (heparin) नामक संयुक्त पोलीसैकेराइड (conjugated polysaccharide) मुक्त करती रहती हैं। हिपैरिन रुधिर-वाहिनियों में बहते हुए रुधिर को जमने से रोकता है।

(120)

प्लाज्मा में उपरोक्त पदार्थों की मात्राएँ रुधिर और कोशिकाओं के बीच रासायनिक आदान-प्रदान के कारण कुछ सीमा तक अल्प समय के लिए बदलती रहती हैं।

क्रिया विधि

प्रशिक्षु प्रशिक्षणार्थियों से प्रश्न करेंगे—

यदि लाल रुधिर कणिकाओं की आयु अल्प होती है तो इसका निबटारा कहाँ और कैसे होता है?

विखण्डित लाल रुधिराणुओं का निबटारा (Disposal)

अशक्त एवं मृत प्रायः लाल रुधिराणुओं का विखण्डन उस समय होता है जब ये प्लीहा या तिल्ली (spleen), यकृत (liver) एवं अस्थि मज्जा की महीनतम् रुधिर कोशिकाओं में से गुजरते होते हैं। प्लीहा को तो इसीलिए इना ''कब्रिस्तान'' (graveyard) कहते हैं। इन अंगों में उपस्थित स्वतन्त्र मैक्रोफेज कोशिकाएँ (macrophages) तथा इन अंगों की महीन रुधिरवाहिनियों की दीवार से लगी रेटिकुलो-एन्डोथीलियमी कोशिकाएँ (reticulo-endothelial cells) भक्षी कोशिकाएँ (phagocytes) होती हैं। ये ध्वस्त लाल रुधिराण्ओं का भक्षण करके इनके हीमोग्लोबिन को हीम (heam) रंगा और ग्लोबिन (globin) प्रोटीन में तोड़ देती हैं। ग्लोबिन का विखण्डन इसके घटक ऐमीनो अम्लों में हो जाता है। हीम के लौह भाग को ये भक्षी कोशिकाएँ रुधिर में मृक्त कर देती हैं। लाल अस्थि मज्जा में इसी लौह का नए लाल रुधिराणुओं के निर्माण में उपयोग होता है। हीम का उपयोग में न लाये जाने वाला लौहरहित अंश बिलिवर्डिन (biliverdin) नामक हरी रंगा में बदलता है जो फिर पीली या नारंगी-सी बिलिरूबिन (bilirubin) नामक पित्त रंगा बन जाती है। इस रंगा को भी भक्षी कोशिकाएँ रुधिर में मुक्त कर देती हैं। यकृत कोशिकाएँ इसे रुधिर से ग्रहण करके पित्त (bile) में सम्मिलित कर लेती हैं। पित्त के साथ यह आहारनाल में पहुँचती है। बड़ी आँत के जीवाण् (bacteria) इसे यूरोबिलिनोजन (urobilinogen) में बदल देते हैं। कुछ यूरोबिलिनोजन आँत से अवशोषित होकर वापस रुधिर में पहुँच जाती है। रुधिर में यह यूरोबिलिन (urobilin) नामक पीली रंगा में बदलती है जिसका मूत्र के साथ उत्सर्जन होता रहता है। शेष यूरोबिलिनोजन स्टरकोबिलिन (stercobilin) नामक भूरी रंगा में बदलकर मल के साथ बाहर निकलती है। मल की दुर्गन्थ इसीके कारण होती है।

अब जानें कि नये रुधिर कणिकाओं की उत्पत्ति कैसे होती हैं—

रुधिरोत्पत्ति (Haemopoiesis or Production of New Blood Corpuscles)—अल्पायु होने के कारण शरीर में लगभग 1% लाल एवं 30% श्वेत रुधिराणु प्रतिदिन समाप्त होते रहते हैं। अतः नए रुधिराणुओं का निरन्तर उत्पादन अत्यावश्यक होता है। यह कुछ संयोजी ऊत्तकों में होता है जिन्हें, इसीलिए, रुधिरोत्पादक ऊतक (haemopoietic tisues) कहते हैं।

(121)

भ्रूणीय प्रावस्था (fetus) में तो रुधिराणु, अस्थि मज्जा, पीतक स्यून (yolk sac), यकृत तिल्ली, लिसका गाँठों और थाइमस प्रन्थि में बनते हैं, लेकिन वयस्क में अधिकांश रुधिराणु (ला रुधिराणु, किणिकामय श्वेत रुधिराणु, मोनोसाइट्स तथा प्लेटलेट्स) केवल हाथ पैरों की लम्बी हिंडुयों, पसिलयों, उरोस्थि, कशेरुकाओं तथा करोटि की हिंडुयों की लाल अस्थि मज्जा (red bone marrow) में बनते हैं। लिम्फोसाइट्स का निर्माण मुख्यतः थाइमस में और कुछ प्लीहा तथा लिसका गाँठों आदि में होता है।

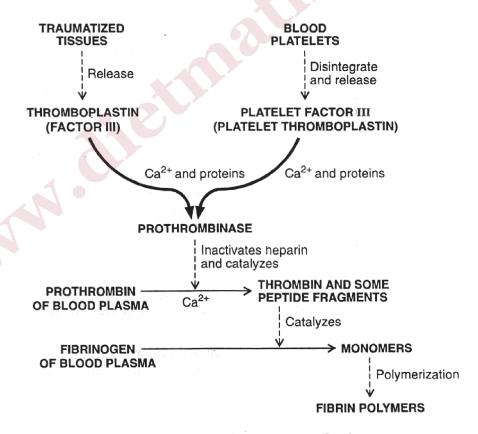
प्रशिक्षु प्रशिक्षणार्थियों से प्रश्न करेंगे—

- शरीर के किसी अंग के कट जाने पर रुधिर बहने लगता है क्यों?
- थोड़े समय बाद बहता रक्त गाढ़ा होकर सूख जाता है और बहना बन्द हो जाता है, क्यों?
- यदि रक्त बहना न बन्द हो तो क्या हो?

शरीर के किसी भी अंग के कट जाने पर रुधिर बहने लगता है। इसका क्या कारण है? रक्त निलकाओं के कट जाने से रुधिर बाहर निकलकर बहने लगता है। बहता रक्त थोड़े समय बाद गाढ़ा होने लगता है औ अन्त में एक परत की तरह कटे स्थान के ऊपर जम जाता है। परन्तु दुर्घटनाओं की स्थिति में जब रक्त का बहाव ज्यादा होता है तब रुधिर जमने की प्रक्रिया नहीं हो पाती है जिससे निरन्तर रक्त बहने की स्थिति में मृत्यु की संभावना बढ़ जाती है।

रुधिर का थक्का जमना या स्कन्दन (Clotting or Coagulation of Blood)

सभी जानते हैं कि शरीर पर, बाहर चोट लगते ही घाव में से पहले कुछ रुधिर निकलता है। थोड़ी देर में ही, रुधिर के जम जाने से, रुधिर का निकलना बन्द हो जाता है तथा हल्के-पीले रंग के द्रव्य की एक बूँद जमे हुए रुधिर पर दिखलाई देने लगती है। यह द्रव्य रुधिर प्लाज्मा का ही अंश होता है। इसे सीरम (serum) कहते हैं। जमे हुए रुधिर के लोथड़े को थक्का (clot) कहते हैं। रक्तस्राव (bleeding) को रोकने की प्रक्रिया को हीमोस्टैसिस haemostasis कहते हैं।


रुधिर स्कंदन की क्रिया-विधि (Mechanism of Blood Clotting)—रुधिर स्कंदन की प्रक्रिया एक जटिल रासायनिक प्रक्रिया होती है। इसका स्पष्ट विवरण होवेल (Howell) ने दिया। रुधिरवाहिनियों में बहते रहने के लिए रुधिर को हिपैरिन (heparin) नामक प्रतिजामन (anticoagulant) भी कहते हैं। यह एक संयुक्त पोलीसैकेराइड (sol) होता है। स्कंदन में होने वाली रासायनिक प्रक्रियाओं के। हम तीन चरणों में बाँट सकते हैं—

1. प्रथम चरण—चोट से घायल भाग में रुधिरवाहिनियाँ सिकुड़ जाती हैं तथा क्षतिग्रस्त ऊतक श्रॉम्बोप्लास्टिन (thromboplastin) नामक पदार्थ मुक्त करते हैं जो कुछ लाइपोप्रोटीन्स (lipoproteins) तथा फॉस्फोलिपिड्स (phospholipids) का मिश्रण होता है। इसे तत्त्व III (factor III) भी कहते हैं।

(122)

क्षतिग्रस्त रुधिर कोशिकाओं से निकली रुधिर प्लेटलेट्स भी विघटित होकर एक फॉस्फोलिपिड (3—pltet factor-3 or platelet thromboplastin) मुक्त करती हैं। ये दोनों पदार्थ प्लाज्मा के कैल्सियम आयनों (Ca^{2+}) और कुछ प्लाज्मा-प्रोटीन्स से मिलकर प्रोथ्रॉम्बिनेज (prothrombinase) नामक इन्जाइम बनाते हैं।

- 2. द्वितीय चरण—प्रोथ्नॉम्बिनेज, Ca^{2+} की उपस्थित में, प्लाज्मा में उपस्थित प्रतिजामन (हिपैरिन) को निष्क्रिय करता और प्रोथ्नॉम्बिन (Prothrombin) नामक निष्क्रिय प्रोटीन को सिक्रिय थ्रॉम्बिन (thrombin) तथा अन्य छोटी पेप्टाइड श्रृंखलाओं में तोड़ देता है।
- 3. तीसरा चरण—अब थ्रॉम्बिन एक एन्जाइम की भाँति काम करके प्लाज्मा की घुलनशील फाइब्रिनोजन (fibrinogen) प्रोटीन को पहले इसके एकलकों अर्थात् मोनोमर्स (ऐमीनो अम्लों) में विखण्डित करता है और फिर इन एकलकों अर्थात् मोनोमर्स के बहुलकीकरण (polymerization) से फाइब्रिन (fibrin) नामक अघुलनशील प्रोटीन अणुओं के संश्लेषण को प्रेरित करता है। अतः फाइब्रिन के लम्बेलम्बे ठोस व महीन सूत्र, घने जाल के रूप में, चोट पर जम जाते हैं। अनेक रुधिराणु इस जाल में फँस जाते हैं। इस प्रकार चोट पर 2 से 8 मिनट में रुधिर का लाल लोथड़ा-सा अर्थात् थक्का

रुधिर के जमने की प्रक्रिया का रेखाचित्र

(123)

(blood clot) जम जाता है। अतः घायल रुधिरवाहिनियों से अधिक रक्तस्राव नहीं हो पाता। थोड़ी देर बाद थक्का सिकुड़ने लगता है जिससे इसमें से हल्के पीले रंग का सीरम (serum) निकल आता है। यह फाइब्रिनोजन एवं रुधिराणुरहित प्लाज्मा होता है।

एक टेस्ट ट्यूब में ताजा रुधिर लगभग 6 मिनट में जम जाएगा। आम धारणा के विपरीत, रुधिर का स्कंदन वायु के सम्पर्क से नहीं वरन् ट्यूब की दीवार से सम्पर्क के कारण होता है। यदि ताजे रुधिर को किसी मोमिया (coated with wax) नली में ध्यान से वायु में खुला रखा जाए तो यह नहीं जमेगा। सिट्रेट (citrate) तथा ऑक्जैलेट (oxalate) आदि की सहायता से, प्लाज्मा के कैल्सियम आयनों को समाप्त करके, रुधिर को जमने से रोका जा सकता है। कभी-कभी, अस्थि-भुंग (bone fracture) या अन्य कारणों से शरीर के भीतर रुधिरवाहिनियाँ फट जाती है और रक्तस्राव हो जाता है, या किसी वाहिनी पर जीवाणुओं का आक्रमण हो जाने से यह घायल हो जाती है। ऐसी अवस्था में वाहिनी के भीतर प्लेट्लेट्स रुधिर का थक्का जमा देती हैं। इस थक्के को थ्रॉम्बस (thrombus) कहते हैं। बड़ा थ्रॉम्बस बन जाए तो वाहिनी में रुधिर का बहाव रुक सकता है। हृदय, मित्तिष्क, फेफड़ों आदि अंगों की रुधिरवाहिनियों में थ्रॉम्बस के बन जाने से रोगी की मृत्यु हो सकती है।

प्लाज्मा की प्रोथ्नॉम्बिन और फाइब्रिनोजन, विटामिन K की उपस्थित में, यकृत में बनती हैं। कुछ लोगों में विटामिन K और इन प्रोटीन्स की कमी के कारण ज़रा-सी चोट लगने पर बहुत-सा रुधिर निकल जाता है। इस रोग को हीमोफिलिया (haemophilia) कहते हैं। यह घातक और आनुवंशिक (hereditary) होता है।

रुधिर की संरचना एवं उसके गुणों के बारे में जानने के पश्चात् यह जानना आवश्यक हो जाता है कि रुधिर के प्रमुख कौन-कौन से कार्य हैं। गुब्रो एवं संरचना े आधार पर हम कार्यों के बारे में निम्निलिखित जानकारी प्राप्त करेंगे—

रुधिर के कार्य (Functions of Blood)

1. विविध पदार्थों का परिवहन (Transportation of Materials)— रुधिर परिवहन के ही माध्यम से शरीर के समस्त भागों के बीच विविध पदार्थों का परिवहन होता है। दूसरे शब्दों में रुधिर शरीर की प्रमुख "आपूर्ति या यातायात प्रणाली (supply line)" का काम करता है। साथ ही बाहरी वातावरण से शरीर के रासायनिक आदान-प्रदान में भी प्रमुख भूमिका रुधिर की ही होती है। अपने हीमोग्लोबिन की सहायता से रुधिर श्वसनांगों में बाहरी हवा की O_2 ग्रहण करके शरीर की कोशिकाओं में पहुँचाता है। कोशिकाओं में अपचय अर्थात् कैटेबोलिज्म (catabolism) के फलस्वरूप बनी CO_2 को ग्रहणकरके यह श्वसनांगों में ले जाता है और वहाँ से इसे बाहरी हवा में O_2 के बदले मुक्त कर देता है। आहारनाल से पचे हुए पोषक पदार्थों को ग्रहण करके, रुधिर इन्हें पहले यकृत में पहुँचाता

- है। फिर यकृत से इन पदार्थों को शरीर की आवश्यकतानुसार वापस लेकर यह समस्त कोशिकाओं को आपूर्ति (supply) करता है। बदले में यह कोशिकाओं में अपचय अर्थात् कैटैबोलिज्म के फलस्वरूप बने नाइट्रोजनीय तथा अन्य अपजात पदार्थों को उत्सर्जन हेतु वृक्कों (kidneys) में पहुँचाता है। अन्तःस्रावी ग्रन्थियों द्वारा स्नावित हॉरमोन्स का रुधिर ही पूरे शरीर में संचरण करता है।
- 2. रोग से बचाव (Defence Against Infection and Diseases)—शरीर के किसी भाग पर हानिकारक जीवाणुओं (bacteria) विषाणुओं (viruses), कवकों (fungi) परजीवी कृमियों (parastitic worms) आदि का आक्रमण होते ही रुधिर के श्वेत रुधिराणु इनका भक्षण करके इन्हें नष्ट करते हैं। रुधिर में उपस्थित एन्टीबॉडीज विषैले तथा पराए, असंगत पदार्थों को निष्क्रिय करके इनका विघटन करते हैं।
- 3. शरीर की सफाई (Scavengering of Body)—टूटी-फूटी, मृत कोशिकाओं के कचरे या मलबे (cell debris) तथा अन्य निरर्थक वस्तुओं का भी श्वेत रुधिराणु भक्षण करके इन्हें नष्ट करते हैं। इस प्रकार, रुधिर शरीर की सफाई करता है।
- 4. शरीर-ताप का नियन्त्रण (Scavengering of Body)—शरीर के विभिन्न भागों में समान ताप बनाए रखने का काम भी रुधिर ही करता है। जब अधिक सिक्रिय भागों में अधिक तीव्र उपापचय (metabolism) के फलस्वरूप ताप बढ़ने लगता है तो रुधिर त्वचा की रुधिरवाहिनियों में अधिक मात्रा में बहकर शरीर सतह पर अपना और शरीर का शीतलन (cooling) करता है।
- 5. चोट का उपचार (Healing of Wounds)—टूटे-फूटे अंगों की मरम्मत करने एवं घावों को भरने में रुधिर सिक्रय भाग लेता है। श्वेत रुधिराणु घायल भागों की कोशिकाओं को वृद्धि एवं विभाजन के लिए प्रेरित करते हैं।
- 6. थक्का जमना Clotting—घाव पर रुधिर-स्कंदन से रुधिर का बहाव तो बन्द होता ही है, चोट के शीघ्र ठीक होने में भी सहायता मिलती है।
- 7. शरीर के अन्तः वातावरण का समस्थैतिक नियन्त्रण (Homeostasis)—रुधिर ऊतक द्रव्य, में, लवणों, जल, अम्लों, क्षारों आदि की मात्रा का नियन्त्रण करके इसे कोशिकाओं के लिए उपयुक्त रासायनिक एवं भौतिक दशाओं में बनाए रखता है।

हम लोगों ने रुधिर के कार्यों के बारे में जानकारी प्राप्त की। अब प्रश्न यह उठता है कि चोट लगने पर, एक्सीडेन्ट होने पर या शरीर में खून की कमी होने पर क्या हम बाहर से रुधिर दे सकते हैं? यदि दे सकते हैं तो किसका रुधिर दें जिसके रुधिर लेने वालें को उपयोगी सिद्ध हो अतः हमारे लिए यह जानना आवश्यक है कि रुधिर कितने प्रकार (वर्ग) का होता है और हम किस रुधिर वर्ग के मनुष्य को किस रुधिर वर्ग का रुधिर दे सकते हैं तो आइये जानें कि "रुधिर वर्ग" क्या होता है।

रुधिर वर्ग

आप जानते हैं कि अपने सगे सम्बन्धी के दुर्घटना की सूचना पाकर तुरन्त लोग देखने एवं सहायता करने हेतु दौड़ पड़ते हैं। यहाँ तक कि अपना रक्त भी देने के लिए तैयार हो जाते हैं। यदि रुधिर वर्ग की जानकारी नहीं है तो पहले डॉक्टर उनके रुधिर वर्ग की जानकारी करते हैं।

इस सम्बन्ध में सबसे पहले कार्ल लैण्डस्टीनर (1868-1943) नामक वैज्ञानिक की खोज के फलस्वरूप पता चला कि रुधिर देने वाले तथ लेने वाले व्यक्ति का रक्त वर्ग समान होना चाहिए। यदि दोनों के रुधिर वर्ग समान नहीं है तो रक्त देने वाले (दाता) का रक्त लेने वाले (ग्राही) के रक्त में पहुँच कर रुधिर का थक्का बना देता है जिससे रुधिर प्रवाह रुक जाता है इस अवस्था में ग्राही की मृत्यु भी हो जाती है। आखिर ऐसा क्यों हो जाता है? प्रत्येक व्यक्ति के रक्त में आखिर क्या अन्तर होता है?

उपर्युक्त खोज में यह बताया गया कि मनुष्य के रुधिर में दो प्रकार के प्रोटीन पदार्थ होते हैं- प्रतिजन तथा प्रतिरक्षी प्रतिजन लाल रुधिर किणकाओं की जीवकला की बाहरी सतह पर स्थित होते हैं। ये दो प्रकार के होते हैं—प्रतिजन A तथा प्रतिजन B। (प्रतिजन के लिए बड़ा अक्षर a तथा b संकेत प्रयोग करते हैं)।

प्रतिरक्षी रुधिर के प्लाज्मा में पाये जाते हैं। ये दो प्रकार के होते हैं। प्रतिरक्षी--a तथा प्रतिरक्षी-b (प्रतिरक्षी के लिए छोटा अक्षर a तथा b संकेत प्रयोग करते हैं)।

रुधिर के थक्के के समान जमना (अभिश्लेषण) तभी होता है जब प्रतिजन A तथा प्रतिरक्षी a साथ-साथ उपस्थित हों अथवा प्रतिजन B तथा प्रतिरक्षी b एक साथ उपस्थित हों। इनके ही अभिश्लेषण के कारण रक्त कोशिकाएँ (वाहिनी) रुँध जाती हैं तथा रक्त का बहाव रुक जाता है जिसके कारण रक्तप्राही मनुष्य की मृत्यु हो जाती है।

खोजों के आधार पर कार्ल लैण्डस्टीनर ने बताया कि लाल रुधिर किणकाओं में पाये जाने वाले प्रतिजन के आधार पर मनुष्य के रक्त को चार वर्गों में बाँटा जा सकता है A, B, AB तथा O। (देखें तालिका-1)

रक्त वर्ग-A, B, AB तथा O.

तालिका-1

क्रमांक	रुधिर वर्ग	प्रतिजन (एण्टीजन)	प्रतिरक्षी (एण्टीबॉडी)
1.	A (ए)	A	b
2.	B (बी)	В	a
3.	AB (एबी)	A और B	कोई नहीं
4.	O (ओ)	कोई नहीं	a तथा b

उपर्युक्त सारणी के द्वारा मनुष्य के रकत वर्गों की जानकारी हो सकती है।

रुधिर वर्ग का महत्त्व

रुधिर वर्ग की जानकारी से रक्त दान जैसा महत्त्वपूर्ण कार्य समाज के लिए वरदान साबित हुआ। इसमें आपको तथा जरूरतमंद बीमारों को रक्त दाताओं तथा रक्त बैंकों से भी रक्त मिल सकता है। रुधिर वर्गों की जानकारी से चिकित्सा कानून के मुकदमों में न्यायालयों को बहुत सहायता मिलती है। इसकी सहायता से पैतृक झगड़े बहुत ही आसानी से निपटाये जा सकते हैं।

कछ और भी जानें—

शरीर में रक्त की कमी होने पर (घायल/ऑपरेशन के समय) डॉक्टर क्या करता है? घालय के शरीर में रक्त चढ़ाता है।

- भ घायल के शरीर में रक्त चढ़ाने हेतु डॉक्टर रक्त कहाँ से लाता है?
- * डॉक्टर घायल के शरीर में रक्त चढ़ाने हेतु सगे-सम्बन्धी से रक्त देने के िलए कहता है। यदि सगे सम्बन्धी से रक्त प्राप्त करने में देरी होती है तो रुधिर बैंक से रक्त प्राप्त करता है।
 - रुधिर प्लाज्मा को पाउडर के रूप में अधिक दिनों तक सुरक्षित रखा जा सकता है। इसका उपयोग भी डॉक्टर आकस्मिकता में करते हैं।

जैसा कि बताया जा चुका है कि रुधिर की कमी होने पर, एक्सीडेण्ट होने पर हम रोगी मनुष्य को उसी के रुधिर वर्ग का रक्त चढ़ाते हैं पर यह रक्त हमें कहाँ से प्राप्त होता है और हम विशिष्ट स्थान से ही रक्त क्यों लेते हैं इसकी जानकारी प्राप्त करेंगे—

(127)

रुधिर बैंक या ब्लड बैंक

अब आप रक्त दान के महत्त्व को जान चुके हैं। आइये ऐसे केन्द्र के बारे में जाने जहाँ रक्त मिल सकता है। ये रक्त बैंक (रुधिर बैंक) कहलाते हैं।

रिधर बैंक प्रत्येक जिला अस्पताल में खोला गया है। इनके अलावा रुधिर बैंक बड़े-बड़े चिकित्सालयों में भी खोले गये हैं। इन अस्पतालों में दाताओं का रुधिर लेकर रुधिर वर्ग को ज्ञात किया जाता है। रुधिर वर्ग निर्धारित होने के बाद रक्त को आधुनिक उपकरण एवं विधियों द्वारा 4.5°C (40°F) पर काँच की/प्लास्टिक की वायुरुद्ध बोतलों में सुरक्षित रखा जाता है। रुधिर को रुधिर बैंक में संरक्षित रखने के लिए उसमें सोडियम साइट्रेट मिलाकर रखा जाता है। इस प्रकार रखा गया रुधिर लगभग 30 दिन तक सुरिक्षत रहात है। आवश्यकता पड़ने पर इस रुधर को घायल/रोगी व्यक्ति के रुधिर वर्ग से मिलान करने के बाद चढ़ाया जाता है। वह संस्था∕स्थान, जहाँ विभिन्न वर्गों के रुधिर सुरिक्षित एवं संग्रहित रहते हैं ''रुधिर बैंक'' कहलाती है। रुधिर बैंक से लिया हुआ ब्लड सुरिक्षित होता है, क्योंकि—

- * रक्त को सुरक्षित रखने से पूर्व सुनिश्चित ही लिया जाता है कि रक्त दूषित तो नहीं है।
- यदि किसी व्यक्ति को रक्त की बीमारी जैसे—हिपैटाइटिस, एड्स हो तो ऐसे व्यक्ति का रक्त
 बैंक में नहीं लेते हैं।
- * जिसका हीमोग्लोबिन कम होता है, उसका भी रक्त नहीं लेते है।
- * ऐसे व्यक्ति का रक्त ही रक्त बैंक में है जो नशीले पदार्थों का सेवन न करता हो। क्या आप जानते हैं?
- विश्व का सबसे प्रमुख रुधिर बैंक-रेड-क्रॉस सोसाइटी है।

रक्त का आधान एवं रक्तदान

रक्त दान क्यों?

रुधिर बैंक में रुधिर की निरन्तरता बनी रहे इसिलए रुधिर दान की आवश्यकता पड़ती है। रुधिर दान एक स्वस्थ नागरिक से लेकर निजी संगठन के कार्यकर्ता द्वारा किया जाता है। रुधिर देने वाले वयक्ति के रुधिर का परीक्षण किया जाता है। रुधिर परीक्षण अनेक गम्भीर बीमारियों से मुक्त रक्त प्राप्त करने के लिए किया जाता है। जैसे—एच.आई.वी. (H.I.V. Test), हेपेटाइटिस बी. और सी. (B & C), वी.डी.आर.एल. (VDRL) सिफलिस तथा मलेरिया मुक्त होने का परीक्षण होता है। धनात्मक (+ ive) परीक्षण आने पर उस व्यक्ति का रक्त नहीं लिया जाता है। इस तरह विषाणु, जीवाणु तथा प्रोटोजोआ से मुक्त रुधर ही रुधिर बैंक में संरक्षित किया जाता है। रुधर दान के लिए इच्छुक व्यक्तियों से रुधिर लेने के लिए रुधिर दान कैम्प भी लगाये जाते हैं। रेड-क्रॉस सोसाइटी, सभी सरकारी

(128)

अस्पतालों एवं बड़े निजी चिकित्सालयों में रुधिर एकत्रित करने की व्यवस्था होती है। एकत्रित एवं सुरक्षित रुधिर आवश्यकता पड़ने पर रोगियों को उपलब्ध कराया जाता है।

रक्त का आदान-प्रदान कैसे—

किसी मनुष्य के शरीर में रक्त की कमी हो जाने पर अलग से रक्त चढ़ाकर रक्त की कमी को पूरा किया जाता है। इस क्रिया को **रुधिर आधान** कहते हैं। इस प्रक्रिया में दाता तथा ग्राही दोनों के रक्त वर्गों को समेलन किया जाता है। रुधिर दाता के रुधिर (RBC) में इस प्रकार का एण्टीजन नहीं होना चाहिए जो रोगी के रुधिर प्लाज्मा में उपस्थित एण्टीबॉडी से मिलकर रुधिर का थक्का बना ले। तालिका में यह स्पष्ट किया गया है कि किस रुधिर वर्ग के ग्राहक (रुधिर प्राप्तकर्ता = receipient) को किस वर्ग का रुधिर दिया जा सकता है। सही (\checkmark) चिन्ह का अर्थ है कि ग्राहक के शरीर में यह रुधिर संचारित (inject) किया जा सकता है, क्रॉस (\ast) चिन्ह का अर्थ है कि ग्राहक के शरीर में यह रुधिर नहीं संचरित किया जा सकता।

I. मनुष्य में रुधिर संचरण तालिका

रक्तदाता (Donor)	रक्त प्राप्तकर्त्ता (Recipient)				
	वर्ग 🗛	वर्ग B	वर्ग AB	वर्ग O	
रुधिर वर्ग	(b एण्टीबॉडी)	(a एण्टीबॉडी)	(कोई एण्टीबॉडी नहीं)	(a तथा b एण्टीबॉडी)	
वर्ग A (A एण्टीजन)		*	✓	×	
वर्ग B (B एण्टीजन)	*	✓	✓	*	
वर्ग AB (A तथा B एण्टीजन)	×	×	✓	✓	
वर्ग O (कोई एण्टीजन नहीं)	✓	✓	✓	✓	

II. रुधिर वर्ग का निर्धारण

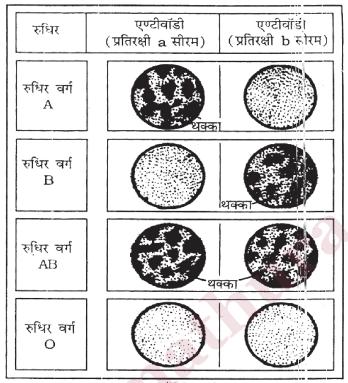
रुधिर वर्ग	एण्टीबॉडी 'a' युक्त सीरम	एण्टीबॉडी 'b' युक्त सीरम	
A	जमता है	नहीं जमता है	
В	नहीं जमता है	जमता है	
AB	जम जाता है	जम जाता है	
О	नहीं जमता है	नहीं जमता है	

(129)

जैसा कि तालिका में दर्शाया गया है। सबसे पहले रोगी का रक्त वर्ग ज्ञात किया जाता है और रुधिर बैंक से उपलब्ध कराये गये समान रुधिर वर्ग के रक्त को रोगी के शरीर में आवश्यकतानुसार चढ़ाया जाता है। रुधिर बैंक से प्रापत रक्त को रोगी को देने के पूर्व भली-भाँति देखा जाता है कि वह एच.आई.वी. (मानव प्रतिरक्षा अपूर्णता विषाणु) मुक्त है। आजकल परिरक्षित रक्त की बोतलों पर एच.आई.वी. मुक्त होने का प्रमाण पत्र भी लिखा रहता है। इनके अतिरिक्त रक्त जीवाणु, प्रोटोजोआ एवं कवकों से मुक्त होनाचाहिए। ऐसा ही रक्त रोगी के शरीर में डॉक्टर की देखरेख में चढ़ाया जाना चाहिए। रुधिर देने वाले को दाता तथा रुधिर प्राप्त करने वाले को ग्राही कहते हैं। रुधिर आधान के लिए सम्वर्गीय व्यक्तियों का चयन करना चाहिए।

सर्वदाता एवं सर्वग्राही

रुधिर वर्ग O के रुधिर में कोई एण्टीजन (antigen) नहीं होता है। अतः इसे किसी भी रुधिर वर्ग के मनुष्य में प्रविष्ट (संचिरत) किया जा सकता है। इसिलए O रुधिर वर्ग के मनुष्यों को **सर्वदाता** (Universal donor) कहते हैं। इसी प्रकार AB के रुधिर में कोई एण्टीबॉडी (antibody) नहीं होता है। अतः यह चारों वर्गों का रुधिर ग्रहण कर सकता है। इसिलए AB रुधिर वर्ग के मनुष्यों को **सर्वग्राही** (Universal Recipient) कहते हैं।


रुधिर वर्ग का निर्धारण (Determination of Blood Groups)

रुधिर संचरण के लिए दाता (donor) एवं प्राप्तकर्ता (recipient) दोनों के रुधिर को अलग-अलग परीक्षण कर उनका रुधिर वर्ग निर्धारित किया जाता है। इसकी जाँच के लिए डॉक्टर बाजार में उपलब्ध (बने बनाये) एण्टीबॉडी 'a' युक्त सीरम तथा एण्टीबॉडी 'b' युक्त सीरम काम में लाते हैं। सीरम (serum) रुधिर प्लाज्मा का ही वह अंश होता है जो रुधिर का थक्का जम जाने के बाद बचा रहता है। एक साफ स्लाइड पर एण्टीबॉडी 'a' युक्त सीरम तथा एण्टीबॉडी 'b' युक्त सीरम का एक-एक बूँद अलग-अलग रखते हैं तथा जिस व्यक्ति का रुधिर वर्ग ज्ञात करना होता है उसका रुधिर जीवाणुमुक्त (sterilized) सुई से उसके हाथ की किसी उंगली के सिरे पर चुभोकर रुधिर की कुछ बूँदें निकालकर दोनों प्रकार के सीरम में थोड़ा-थोड़ा मिला देते हैं जो प्रतिक्रिया होती हैं उसके आधार पर रुधिर वर्ग का निर्धारण करते हैं जैसे—

- (i) यदि किसी भी सीरम में रुधिर नहीं जमता है तो उस व्यक्ति का रुधिर O वर्ग का है।
- (ii) यदि दोनों ही रुधिर वर्ग सीरम में जम जाता है तो रुधिर AB वर्ग का है।
- (iii) यदि रुधिर केवल एण्टीबॉडी 'a' सीरम में जमता है तो रुधिर A वर्ग का है।
- (iv) यदि रुधिर केवल एण्टीबॉडी 'b' सीरम में जमता है तो रुधिर ${f B}$ वर्ग का है।

(130)

रुधिर वर्ग का निर्धारण निम्नलिखित तालिका एवं चित्र से स्पष्ट हो जाता है।

रुधिर वर्गों के निर्धारण की विधि

रुधिर वर्गों के निर्धारण की विधि

तालिका देखकर आप जान सकते हैं किस रुधिर वर्ग के रोगी को कौन-से रुधिर वर्ग का रक्त दिया जा सकता है।

क्रिया कलाप—

कभी-कभी आप ने देखा होगा जब कुछ लोग सुस्त, घबड़ाये, बेचैन, लड़खड़ाते हुए दिखाई देते हैं तो कहा जाता है कि चलो भाई किसी डॉक्टर को दिखाया जाय। कारण क्या हो सकता है? डॉक्टर द्वारा नब्ज तथा रक्त दाब (ब्लड प्रेशर) जाँच करके बताया जाता है कि रक्तदाब (B.P.) असामान्य है जिससे इन्हें इस प्रकार की परेशानी हो रही है।

बी.पी. की एक सामान्य अवस्था होती है। बी.पी. क्या है आइए इसकी जानकारी प्राप्त करते हैं।

रक्तदाब/ब्लड प्रेशर

सर्वप्रथम **हेल्स** (S. Hales 1733) ने घोड़े में रक्त दाब नापा था। आप जानते हैं कि हृदय द्वारा रक्त निश्चित लय या चक्र में पम्प किया जाता है। रक्त बन्द निलकाओं में बहता है अतः यह निलकाओं

(131)

की दीवार पर दबाव डालता है। हृदय प्रकुंचन के समय यह दाब अधिक होता है तथा हृदय शिथिलन के समय कम होता है। इसे रक्त दाब (B.P.) कहते हैं जिसका दो अवस्थाएँ होती है। प्रकुंचन दाब— यह रक्त दाब की ऊपरी सीमा है जो हृदय संकुचन की अवस्था प्रदर्शित करती है। शिथलन दाब— यह रक्त की निचली सीमा है जो हृदय शिथिलन की अवस्था प्रदर्शित करती है।

रक्त दाब नापने के यन्त्र के लिए **दाबान्तरमापी** कहते हैं। रक्त दाब मनुष्य में बाजू के क्रेनियल धमी में नापा जाता है। स्वस्थ मनुष्य का दाब (B.P.) 120/80mm Hg होता है। प्रकुंचन दाब 120 Hg तथा शिथिलन दाब 80 Hg दर्शाता है। क्या आपने दाबान्तरमापी देखा है? अपने पास के चिकित्सक के पास जाकर दाबान्तरमापी देखने का प्रयास करें।

दाबान्तर मापी द्वारा रुधिर दाब नापते हुए

Rh-कारक (Rh-Factor)

अभी तक आप ने पढ़ा है कि लाल रुधिर कणिकाओं की झिल्लियों पर केवल दो ही प्रकार के प्रतिजन (antigen) पाये जाते हैं जिसके अनुसार समस्त रुधिर को A, B, AB तथा O कुल चार रुधिर वर्गों में बाँट दिया गया है। रुधिर वर्ग A के लाल रुधिर कणिकाओं पर A प्रतिजन, B पर B प्रतिजन, AB पर A एवं B दोनों प्रतिजन तथा O पर कोई भी प्रतिजन नहीं होता है, परन्तु लैण्डस्टीनर तथा वीनर (Landsteiner and Weiner) द्वारा रहीसस बन्दरों (Rhesus monkey) के लाल रुधिर कणिकाओं की झिल्लियों पर Rh प्रतिजन की खोज किया गया जो बाद में मनुष्यों के लाल रुधिर कणिकाओं की झिल्लियों पर देखा गया। Rh प्रतिजन को Rh कारक (Rh-factor) भी कहते हैं।

जिस मनुष्य की लाल रुधिर कणिकाओं पर Rh प्रतिजन पाया जाता है उसे Rh पॉजिटिव रुधिर वर्ग (Rh^+) तथा जिस मनुष्य के लाल रुधिर कणिकाओं पर Rh प्रतिजन नहीं पाया जाता है उसे Rh निगेटिव रुधिर वर्ग (Rh^-) कहते हैं।

Rh प्रतिजन के अनुसार रुधिर वर्ग दो प्रकार के होते हैं (क) Rh पाजिटिव (Rh^+) (ख) Rh निगेटिव (Rh^-)। इस प्रकार मनुष्यों में कुल रुधि वर्ग आठ प्रकार के हो जाते हैं जो निम्नलिखित हैं—

(क) Rh⁺

(ख) Rh⁻

(i) A⁺

(v) A⁻

(ii) B⁺

(vi) B⁻

(iii) AB⁺सर्वग्राही

(vii) AB-

(iv) O^+

(viii) O⁻ सर्वदाता

(132)

भारतीयों में 97% मनुष्य Rh^+ तथा 3% Rh^- रुधिर वर्ग के होते हैं।

जब किसी Rh^+ रुधिर वर्ग वाले मनुष्य का रुधिर किसी Rh^- रुधिर वर्ग वाले मनुष्य को दिया जाता है तो इस मनुष्य के रुधिर में Rh^+ रुधिर के विरुद्ध प्रतिरक्षी (antibodies) बनने लगता है। परिणामस्वरूप Rh^+ रुधिर इन प्रतिरक्षियों के कारण थक्कों के रूप में जमने लगता है। इस प्रकार Rh^+ वर्ग का रुधिर Rh^- वर्ग के मनुष्यों को नहीं दिया जा सकता है।

 ${\bf O}^-$ रुधिर वर्ग में कोई भी प्रतिजन (एण्टीजन) नहीं होता है। अतः यह रुधिर वर्ग आसानी से किसी भी रुधिर वर्ग वाले मनुष्यों को दिया जा सकता है। इस प्रकार ${\bf O}^-$ रुधिर वर्ग सर्वदाता है। ${\bf O}^+$ रुधिर वर्ग में ${\bf Rh}$ प्रतिजन होता है इसिलए यदि ${\bf O}^+$ रुधिर वर्ग वाला रुधिर ${\bf Rh}^-$ रुधिर वर्ग वाले मनुष्य को दिया जाए तो ${\bf O}^+$ वर्ग वाला रुधिर थक्कों के रूप में जमने लगता है। इस प्रकार ${\bf O}^+$ रुधिर वर्ग सर्वदाता नहीं है।

 AB^+ रुधिर वर्ग में A, B तथा Rh तीनों प्रतिजन (antigen) पाये जाते हैं परन्तु इन प्रतिजनों के विरुद्ध इनमें कोई प्रतिरक्षी (antibody) नहीं होते हैं और न ही बनते हैं। इस प्रकार AB^+ रुधिर वर्ग वाले मनुष्य को किसी भी रुधिर वर्ग का रुधिर दिया जा सकता है। इसलिए AB^+ रुधिर वर्ग सर्वग्राही है। AB^- रुधिर वर्ग में A तथा B प्रतिजन पाया जाता है, परन्तु Rh^- प्रतिजन नहीं पाया जाता है। यदि AB^- रुधिर वर्ग वाले मनुष्य को Rh^+ वर्ग वाला कोई भी रुधिर दिया जाता है तो Rh^+ वर्ग वाला रुधिर थक्कों के रूप में जमने लगता है। अतः AB^- रुधिर वर्ग सर्वग्राही नहीं है।

इरिथ्रोब्लास्टोसिस फीटैलिस (Erythroblastosis fetalis)

यह Rh कारक (Rh factor = एण्टीजन) से सम्बन्धित रोग है जो गर्भावस्था के शिशुओं में होता है। इस रोग से प्रभावित शिशु की गर्भावस्था में या जन्म के तूरन्त बाद मृत्यू हो जाती है।

ऐसे बच्चों के पिता Rh^+ तथा माता Rh^- होते हैं ऐसी दशा में भ्रूण शिशु सदैव Rh^+ वाला होता है। परिवर्द्धन काल में भ्रूण शिशु के कुछ लाल रुधिर किणकायें माता के रुधिर में पहुँचते हैं जिससे माता के रुधिर में Rh प्रतिरक्षी (antibody) का निर्माण होने लगता है। माता इस प्रतिरक्षी से अप्रभावित रहती है क्योंकि इसके रुधिर में Rh प्रतिजन नहीं होता है। लेकिन जब यह प्रतिरक्षी माता के रुधिर के साथ भ्रूण शिशु में पहुँचता है तो इसकी लाल रुधिर किणकायें चिपकने लगती हैं जिससे भ्रूण शिशु की मृत्यु हो जाती है। ऐसा देखा गया है कि प्रथम शिशु के समय माता के शरीर में कम प्रतिरक्षी बनने से प्रथम शिशु जीवित रह सकता है लेकिन बाद में माता के शरीर में अधिक प्रतिरक्षी बनने से अगले शिशुओं की मृत्यु हो जाती है।

इसे भी जानें—

लाल फीता : एड्स का अन्तर्राष्ट्रीय चिह्न

आईसीडी-10 B24.

आईसीडी-9 042

डिज़ीज़-डी.बी. 5938

मेडलाइन प्लस 000594

ईमेडिसिन emerg/253

एम ईएसएच D000163

एड्स सम्बन्धित लघुनाम

AIDS : एक्वायर्ड एम्युनो डेफ़िशियेंसी सिन्ड्रोम

HIV : मानवीय प्रतिरक्षी अपूर्णता विषाणु

CD4+ : CD4+ टी सहायक कोशिकाएँ

CCR5: चेमोिकन (C-C मोटिफ़) रिसेप्टर 5

CDC : रोग रोकथाम एवं निवारण केन्द्र

WHO : विश्व स्वास्थ्य संगठन

PCP : न्यूमोसिस्टिस निमोनिया

TB : तपेदिक

MTCT : माँ-से-सन्तान प्रसार

HAART : उच्च सिक्रय एंटीरिट्रोवियल चिकित्सा

STI/STD: यौन प्रसारित संक्रमण/रोग

रुधिर संक्रमण से होने वाले रोग—प्रशिक्षु प्रशिक्षार्थियों से कहेगा कि आपने इकाइयों में आप टी.बी., हैजा, चेचक, डायरिया आदि रोगों से परिचित हो चुके हैं ये विषाणु, जीवाणु, कीट जिनत, विटामिन की कमी से अथवा कुछ तत्वों की कमी से होते हैं परन्तु रक्त की कमी या रक्त में असामान्यता होने पर भी कुछ रोग हो जाते हैं जैसे एनीमिया, पॉलीसाइथीनिया आदि। रुधिर संक्रमण से होने वाले कुछ रोग हैं—हेपेटाइटिस बी, एड्स आदि।

इकाई-6

रक्त पीड़ित/रक्त से सम्बन्धित सामान्य रोगों की जानकारियाँ

इस इकाई के अध्ययन करने से रक्त से सम्बन्धित कुछ बीमारियों की सामान्य जानकारी प्राप्त होंगी जोकि निम्नलिखित हैं—

जैसा कि पिछली इकाइयों में आप टी.बी., हैजा, चेचक, डायरिया आदि रोगों से परिचित हो चुके हैं। ये सभी बीमारियाँ विषाणु, जीवाणु, कीटजिनत, विटामिन्स की कमी से अथवा कुछ तत्वों की कमी से होते हैं। प्रायः देखा गया है कि मनुष्य के रुधिर में रासायिनक कमी, इसके कणों में खराबी या निश्चित अनुपात में न होने पर, कभी रेडिएशन या ड्रगथेरेपी से रुधिर में असमानता आ जाती है या कुछ परजीवी रक्त में प्रवेश कर जाते हैं और रुधिर अशुद्ध हो जाता है या रंग उत्पन्न करता है या असामान्य हीमोग्लोबिन की उपस्थित के कारण या रुधिर में हीमोग्लोबिन की कमी हो जाना जिसे एनीमिया कहते हैं आदि रोग हो जाते हैं। आइये आज हम कुछ रक्त पीड़ित बीमारियों की सामान्य जानकारी प्राप्त करते हैं जोकि निम्नलिखित हैं—

- * एनीमिया या रुधिर क्षीणता
- पालीसाईथीनिया या बहुलोहिताणु
- ल्यूकीमिया या अधिश्वेतरक्तता
- 1. रुधिरक्षीणता (Anaemia)—यह रुधिर से सम्बन्धित एक व्यापक रोग होता है। रुधिर में लौहयुक्त श्वसन रंगा—हीमोग्लोबिन (haemoglobin)—की कमी इस रोग का मूल लक्षण होता है। हीमोग्लोबिन लाल रुधिराणुओं (Red Blood Corpuscles—RBCs) में होता है। अतः रुधिर में इसकी मात्रा लाल रुधिराणुओं (RBCs) की संख्या पर निर्भर करती है। इसलिए, अधिक रुधिरस्राव (excessive bleeding), लाल रुधिराणुओं (RBCs) के निर्माण की दर घटने, लाल रुधिराणुओं (RBCs) में हीमोग्लोबिन के कम बनने, लाल रुधिराणुओं (RBCs) के व्यापक विनाश, लाल रुधिराणुओं (RBCs) की संरचनात्मक विकृति आदि अनेक कारणों से रुधिरक्षीणता हो जाती है। इसके रोगी पीतवर्ण और कमजोर होते हैं इनकी साँस बहुत जल्दी फूलती है।
- 2. बहुलोहिताणु (Polycythemia)—रुधिरक्षणीता के विपरीत, इसमें लाल रुधिराणुओं (RBCs) के बनने की दर के तीव्र हो जाने के कारण रुधिर में इनकी संख्या बहुत बढ़ जाती है। इससे रुधिर की मात्रा बढ़ने के कारण हृदय पर जोर पड़ता है तथा रुधिर के गाढ़ा हो जाने के कारण रुधिरवाहिनियों में इसका बहाव धीमा हो जाता है।
- 3. अधिश्वेतरक्तता (Leukemia)—यह अस्थि मज्जा तथालिसका ऊतक का कैन्सर (Cancer) रोग होता है। इसमें श्वेत रुधिराणुओं (while blood corpuscles—WBCs) के बनने की दर के

(135)

अत्यधिक बढ़ जाने से रुधिर में इन रुधिराणुओं की संख्या बहुत बढ़ जाती है। रोगी की प्लीहा, यकृत तथा लिसका गाँठें फूल जाती हैं तथा उच्च ज्वर, जोड़ों में असहाय पीड़ा और व्यापक रुधिरस्नाव होने लगता है। उपयुक्त उपचार के अभाव में रोगी की मृत्यु हो जाती है।

इसे भी जानें—

- एग्रेनूलोसाइटालिस—ज्रब िकसी रोगी का रेडिएशन होता है या ड्रगथेरेपी होती है, तो ग्रेनोलोसाइट्स
 की संख्या कम हो जाती है।
- * रुधिर जहर वात या सेप्टोसीिमया—जो रुधिर के बहाव में कोई सूक्ष्म जीव (वायरलेन्ट) प्रवेश कर जाता है तो रुधिर संक्रामक हो जाता है। यदि समय से इसका इलाज न हो तो व्यक्ति की मृत्यु भी हो सकती है।
- ..टक रोग १ ----रक्त स्त्राव मरोग या हीमोफीलिया—यह एक जेनेटिक रोग होता है अधिकतर पुरुषों में पाया

इकाई-7

एड्स व हेपेटाइटिस-बी की सामान्य जानकारी, कारण, लक्षण व बचाव के उपायों से अवगत कराना, सुरक्षा एवं प्राथमिक उपचार

यह रोग एच.आई.वी. (Human Immuno Deficiency Virus) द्वारा होता है। ऐसे व्यक्ति को एच.आई.वी. धनात्मक कहते हैं। इस रोग से प्रसित व्यक्ति दो से दस वर्षों तक सामान्य जिन्दगी बिता सकता है, इस रोग का विषाणु शरीर में रक्षक श्वेत रुधिर कणिकाओं एवं मस्तिष्क की कोशिकाओं को प्रभावित करता है। धीरे-धीरे प्रभावित कोशिकायें खत्म होती जाती हैं तथा कुछ वर्षों में शरीर सामान्य रोगों से भी अपना बचाव नहीं कर पाता है और अनेक बीमारियों से भी धिरने लगता है। अन्त में रोगी की मृत्यु हो जाती है। एड्स िको चिन्ह ($\sqrt{}$) से व्यक्ति किया जाता है।

एड्स के लक्षण

एड्स के रोगी में निम्नलिखित लक्षण पाये जाते हैं—

भूख न लगना, शरीर के वजन में कमी, ज्वर, त्वचा पर ददोरी, थकावट, रोग से लड़ने की क्षमता में कमी आदि। इस रोग से पीड़ित व्यक्ति में निमोनिया तथा त्वचा कैंसर होना ज्यादा होता है।

एड्स के कारण तथा रोकथाम

एच.आई.वी. विषाणु के शरीर में पहुँचने से मनुष्य एड्स से पीड़ित हो जाता है। एड्स सबसे खतरनाक जानलेवा तथा अभी तक लाइलाज रोग है। शरीर में एड्स विषाणु के प्रवेश करने से शरीर की रोगों से लड़ने की शक्ति नष्ट हो जाती है। इससे शरीर रोगों से लड़ने में असमर्थ हो जाता है। अन्ततः इससे पीड़ित व्यक्ति की मृत्यु हो जाती है। इस रोग के विषाणु संक्रमित व्यक्तियों से स्वस्थ व्यक्ति में कई तरीकों से पहुँचते हैं। इनमें से मुख्य रूप से रक्त आधार में असावधानी वश रक्त की जाँच न होना या संक्रमित व्यक्ति द्वारा उपयोग किया गया रेजर/ब्लेड या इन्जेक्शन दी गई सूई के उपयोग है। यह बीमारी संक्रमित माताओं से बच्चों में भी आ जाती है। एड्स से बचने के निम्नलिखित उपाय हैं—

(137)

- * विसंक्रमित, साफ, नई सूई एवं सीरिज का प्रयोग करना चाहिए।
- रक्त आधान से पूर्व रक्त की जाँच भली-भाँति अनिवार्य रूप से करा लेनी चाहिए।
- * नशीली दवाओं के इंजेक्शन नहीं लेने चाहिए।
- * रेजर/ब्लेड का उपयोग सावधानीपूर्वक करना चाहिए।

क्या इनके कारणों से बचकर हम एड्स से सुरक्षित हो जाएंगे? स्पष्टतः इसका उत्तर हाँ ही है।

विशेष

इनसे एड्स नहीं फैलता है-

- एड्स, संक्रमित व्यक्ति के साथ दैनिक प्रयोग की वस्तुओं का उपयोग करने से नहीं
 फैलता है। जैसे—टेलीफोन, टाइपराइटर, किताब तथा कॉलम आदि।
- हाथ मिलाना, छूना, साथ उठना-बैठना, आस-पास खड़ा होना, एक-दूसरे के कपड़ों को पहनने से एड्स नहीं होता है।
- एक ही कार्यालय, कारखाना आदि में साथ-साथ काम करने से या उपकरणों को मिलाकर प्रयोग करने से एड्स नहीं फैलता है।
- साथ-साथ खाने-पीने तथा प्लेट, गिलास तथा अन्य बर्तनों को मिलाकर प्रयोग करने से भी एड्स नहीं फैलता है।
- खाँसने, छींकने, हवा आदि से नहीं फैलता है।
- कीट-पतंगों के काटने से (जैसे—मक्खी, मच्छर, जुँ तथा खटमल आदि) से एड्स नहीं
 फैलता है।

क्या आप जानते हैं—

- 1. दिसम्बर को विश्व एड्स दिवस कहते हैं।
- बन्दरों में सर्वप्रथम एड्स का उद्भव हुआ है और उसके बाद ही मनुष्यों में यह रोग फैला है।
- 3. एलीसा (ELISA) परीक्षण से एड्स का पता लगाया जाता है।
- 4. एड्स (AIDS) का पूरा नाम Acquired Immuno Deficiency Syndrome) है।

आइये AIDS की सम्पूर्ण जानकारी प्राप्त करें

उपार्जित प्रतिरक्षी अपूर्णता सहलक्षण या उ.प्र.अ.स. (अंग्रेज़ीःएड्स) मानवीय प्रतिरक्षी अपूर्णता विषाणु (मा.प्र.अ.स.) (एच.आई.वी.) संक्रमण के बाद की स्थिति है, जिसमें मानव अपने प्राकृतिक प्रतिरक्षण क्षमता

(138)

खो देता है। एड्स स्वयं कोई बीमारी नहीं है पर एड्स से पीड़ित मानव शरीर संक्रामक बीमारियों जो कि जीवाणु और विषाणु आदि से होती है, के प्रति अपनी प्राकृतिक प्रतिरोधी शक्ति खो बैठता है, क्योंकि एच.आई.वी. (वह वायरस जिससे कि एड्स होता है) रक्त में उपस्थित प्रतिरोधी पदार्थ लसीका-कोशों पर आक्रमण करता है। एड्स पीड़ित के शरीर में प्रतिरोधक क्षमता के क्रमशः क्षय होने से कोई भी अवसरवादी संक्रमण, यानि आम सर्दी जुकाम से लेकर क्षय रोग जैसे रोग तक सहजता से हो जाते हैं और उनका इलाज करना कठिन हो जाता है। एच.आई.वी. संक्रमण को एड्स की स्थिति तक पहुँचने में 8 से 10 वर्ष या इससे भी अधिक समय लग सकता है। एच.आई.वी. से ग्रस्त व्यक्ति अनेक वर्षों तक बिना किसी विशेष लक्षणों के बिना रह सकते हैं।

विशेष जानकारी

एड्स वर्तमान युग की सबसे बड़ी स्वास्थ्य समस्याओं में से एक है यानी कि यह एक महामारी है। एड्स के संक्रमण के तीन मुख्य कारण हैं—असुरक्षित यौन सम्बन्धों, रक्त के आदान-प्रदान तथा माँ से शिशु में संक्रमण द्वारा। राष्ट्रीय उपार्जित प्रतिरक्षी अपूर्णता सहलक्षण नियंत्रण कार्यक्रम और (1) संयुक्त राष्ट्रसंघ उपार्जित प्रतिरक्षी अपूर्णता सहलक्षण) दोनों ही यह मानते हैं कि भारत में 80 से 85 प्रतिशत संक्रमण असुरक्षित विषमलिंगी/विषमलैंगिक यौन सम्बन्धों से फैल रहा है (1)। माना जाता है कि सबसे पहले इस रोग का विषाणुः एच.आई.वी. अफ्रीका के खास प्रजाति की बन्दर में पाया गया है और वहीं से ये पूरी दुनिया में फैला। अभी तक इसे लाइलाज माना जाता है लेकिन दुनिया भर में इसका इलाज पर शोधकार्य चल रहे हैं। 1981 में एड्स से अब तक इससे लगभग 30 करोड़ लोग जान गँवा बैठे हैं।

जानना आवश्यक है—

एच.आई.वी. यानि ह्यूमन इम्युनडिफिशिएंशी वायरस एक विषाणु है जो बॉडी के इम्यून सिस्टम पर नकारात्मक प्रभाव डालता है और व्यक्ति के शरीर में उसकी प्रतिरोधक क्षमता को दिनोदिन कमजोर कर देता है। भारत की बात करें तो यहाँ एड्स के मामले थमने का नाम नहीं ले रहे हैं। यहाँ सबसे ज्यादा एच.आई.वी. एड्स के केस (13107) महाराष्ट्र में दर्ज हुए हैं। वहीं दूसरे नम्बर पर आन्ध्र प्रदेश है।

अगर पिछले वर्षों से तुलना करें तो संख्या लगातार बढ़ रही है। 209-10 में 246,627 केस पूरे देश में आये, जबिक 2010-11 में यह संख्या बढ़कर 320, 114 रही। इस साल अप्रैल से लेकर दिसम्बर तक 275,377 केस आ चुके हैं। सही तरीके से देखभाल न करने की दशा में यह बीमारी बढ़कर एड्स का रूप धारण कर लेती है।

इसे भी जाने-

एड्स और एच.आई.वी. में अन्तर संपादित करें—

एच.आई.वी. एक अतिसूक्ष्म विषाणु हैं जिसकी वजह से एड्स हो सकता है। एड्स स्वयं में कोई रोग नहीं है बिल्क एक संलक्षण है। यह मनुष्य की अन्य रोगों से लड़ने की नैसर्गिक प्रतिरोधक क्षमता को घटा देता है। प्रतिरोधक क्षमता के क्रमशः क्षय होने से कोई भी अवसरवादी संक्रमण, यानि आम सर्दी जुकाम से लेकर फुम्फुस प्रदाह, टी.बी., क्षय रोग, कर्क रोग जैसे रोग तक सहजता से हो जाते हैं और उनका इलाज करना किठन हो जाता है और मरीज़ की मृत्यु भी हो सकती है। यही कारण है कि एड्स परीक्षण महत्त्वपूर्ण है। सिर्फ एड्स परीक्षण से ही निश्चित रूप से संक्रमण का पता लगाया जा सकता है।

हमारा प्रतिरक्षा तंत्र एवं एचआईवी

हमारे शरीर में डब्लू.बी.सी. (श्वेत रक्त कोशिकायें) होती हैं जो रोग एवं जीवाणुओं से लड़ती हैं तथा हमें बीमार पड़ने से बचाती हैं। यही हमारा प्रतिरक्षा तंत्र है।

एचआईवी सीधे डब्लू.बी.सी. पर हमला कर इनके न्यूक्लियस (नाभिक) में प्रवेश कर जाता है तथा नाभिक की सहायता से अपने को बढ़ाता जाता है। यह डब्लू.बी.सी. को खत्म कर प्रतिरक्षा तंत्र को बेकर कर देता है।

शरीर में एच.आई.वी. का बढ़ना

एच.आई.वी.

↓

संक्रमण काल (विन्डो पीरियड)

↓

शान्त संक्रमण

↓

एड्स

- चार में से किसी एक कमारण के द्वारा एच.आई.वी. का शरीर में प्रवेश
- छः हफ्तों से छः माह की अवधि (एण्टीबॉडी की संख्याओं पर निर्भर)
- पाँच से 10 वर्ष तक कोई लक्षण न दिखना।

(140)

अनियंत्रित डायरिया एवं बुखार, बिना किसी कारण के वजन का कम हो जाना, कमजोरी
 महसूस करना, त्वचा में संक्रमण का होना तथा अन्य अपार्चुनिस्टिक संक्रमणों का होना।

एच.आई.वी./एड्स के लक्षण

- 1. थकान होना—पिछले कुछ दिनों से पहले से ज्यादा थकान होना या हर समय थकावट महसूस करना एच.आई.वी. का शुरुआती लक्षण होता है।
- 2. मांसपेशियों में खिचाव—आपने किसी प्रकारि का भी भारी काम नहीं किया या फिर आप शारीरिक मेहनत का कोई काम नहीं करते, फिर भी मांसपेशियों में हमेशा तनाव और अकड़न रहती है। यह भी एच.आई.वी. का लक्षण होता है।
- 3. जोड़ों में दर्द व सूजन—ढलती उम्र से पहले ही अगर आपके जोड़ों में दर्द और सूजन हो जाती है तो आपको एच.आई.वी. टेस्ट करवाने की जरूरत है।
- 4. गला पकना—अक्सर कम पानी पीने की वजह से गला पकने की शिकायत होती है, लेकिन अगर आप पानी पर्याप्त मात्रा में पीते हैं औश्र फिर भी आपके गले में भयंकर खराश और पकन महसूस हो, तो यह लक्षण अच्छा नहीं है।
- 5. सिर में दर्द—सिर में हर समय हल्का-हल्का दर्द रहना, सुबह के समय दर्द में आराम और दिन के बढ़ने के साथ दर्द में भी बढ़ोत्तरी एच.आई.वी. का सबसे बड़ा लक्षण है।
- 6. धीरे-धीरे वजन का कम होना—एच.आई.वी. में मरीज का वजन एकदम से नहीं घटता है। हर दिन धीरे-धीरे बॉडी के सिस्टम पर प्रभाव पड़ता है और वजन में कमी होती है। अगर पिछले दो महीनों में बिना प्रयास के आपके वजन में गिरावट आई है तो चेक करवा लें।
- 7. त्वचा पर रेशैज होना—शरीर में हल्के लाल के चकत्ते पड़ा या रेशैज होना भी एच.आई.वी. का लक्षण है।
- 8. बिना वजह के तनाव होना—आपके पास कोई प्रॉब्लम नहीं है लेकिन फिर भी आपको तनाव हो जाता है, बात-बात पर रोना आ जाता है तो निःसन्देह आपको एच.आई.वी. की जाँच करवाना जरूरी है।
- 9. मतली आना—हर समय मतली आना या फिर खाना खने के तुरन्त बाद उल्टी होना भी शरीर में एच.आई.वी. के वायरस का होना इंडीकेट करते हैं।
- 10. हमेशा जुकाम रहना—मौसम आपके बेहद अनुकूल है लेकिन उस हालत में भी नाक बहती रहती है। हर समय छींक आती है और रूमाल का साथ हमेशा चाहिए होता है।

(141)

11. ड्राई कफ—आपको भयंकर खाँसी नहीं हुई थी लेकिन कफ आता रहता है। कफ में कोई ब्लड नहीं आता। मुँह का जायका खराब रहता है। अगर आपको इनमें से अधिकांशतः लक्षण अपने शरीर में लगते हैं तो आप एच.आई.वी. परीक्षण जरूर करवाएँ।

HIV/AIDS से बचाव के उपाय

1 दिसम्बर पूरे विश्व में एड्स दिवस के रूप में मनाया जाता है। आज इस बीमारी को खत्म करने के लिये इतने सारे अभियान पूरी दुनिया में चलाए जा रहे हैं लेकिन जागरुकता फैलने का नाम ही नहीं ले रही है। हमारे भारत को ही देख लीजिये अभी हाल ही में परिवार कल्याण मंत्रालय की ताज़ा रिपोर्ट के अनुसार महाराष्ट्र और आन्ध्र प्रदेश राज्य एड्स के मामले में पहले और दूसरे नम्बर पर है। आप यदि एड्स की चपेट में नहीं आना चाहते हैं तो कृपा कर के इसे रोकने के उपायों के बारे में जरूर जानकारी हासिल करें।

ऐसे रोकिये एड्स को फैलने से

- सुरक्षा का उपयोग—एड्स और एच.आई.वी. संक्रमण को रोकने के लिए, हमेशा सम्बन्ध बनाते वक्त कंडोम का उपयोग करें। अपने जीवनसाथी के प्रति हमेशा वफादार रहें और एक से अधिक व्यक्ति से यौनसम्बन्ध न रखें।
- 2. हमेशा एक साथी रखें—एक साथी रखना हमेशा से ही अच्छा होता है। आप दोनों पार्टनर को एक-दूसरे के साथ वफादार होना चाहिये। अलग-अलग पार्टनर रखने से और प्रोटेक्शन ना यूज करने से यह संक्रमण जल्द फैलेगा।
- 3. प्रयोग की गई सूइयों का प्रयोग न करें—सूई लगवाने से पहले देख लें कि वह नई हो वरन् खून द्वारा एड्स फैल सकता है। यदि आप एच.आई.वी. संक्रमित या एड्स ग्रसित हैं तो रक्तदान कभी न करें।
- 4. स्तनपान न करवाएँ—यू.एस. हेल्थ एण्ड सर्विस डिपार्टमेण्ट के मुताबिक दूध में एच.आई.वी. वाइरस हो सकते हैं, इसलिये यदि आपको एड्स हो गया है तो बच्चे को स्तनपान न करवाएँ।
- 5. एच.आई.वी. परीक्षण—यदि आपको एच.आई.वी. संक्रमण होने का संदेह हो तो तुरन्त अपना एच.आई.वी. परीक्षण करा लें। उल्लेखनीय है कि अक्सर एच.आई.वी. के कीटाणु, संक्रमण होने के 3 से 6 महीनों बाद भी, एच.आई.वी. परीक्षण द्वारा पता नहीं लगाये जा पाते। अतः तीसरे और छठे महीने के बाद एच.आई.वी. परीक्षण अवश्य दोहरायें।

आवश्यक सुझाव

युवा वयस्क अपने आपको निम्नलिखित निम्नलिखित के द्वारा एच.आई.वी. संक्रमित होने से बचा सकते हैं—

- * एच.आई.वी./एड्स तथा बढ़ने के तथ्यों की जानकारी द्वारा।
- अपनी जिज्ञासाओं तथा डर के बारे में पूछते समय शर्मायें नहीं, इनका समाधान प्राप्त करें।
- * संयम से काम लें (सम्भोग से बचें)
- अपने मित्रों को अपने ऊपर अस्रक्षित क्रिया-कलापों का दबाव न बनने दें।
- अप यदि आप सुई/इंजेक्शन या किसी ऐसे उपकरण का प्रयोग करने जा रहे हैं जो आपकी त्वचा को बेधता है तो सुनिश्चित करें कि यह उपकरण विसंक्रमित किया जा चुका है।
- सुनिश्चित करें कि खान को चढ़ाने से पहले जाँचा गया है। "एच.आई.वी. रहित" प्रमाणित खून का ही प्रयोग करें।
- माँ द्वारा बच्चे को संक्रमित होने से बचाने का इलाज सभी सरकारी अस्पतालों में उपलब्ध
 है। गर्भवती महिलाओं को अपनी जाँच करानी चाहिये तथा जरूरत के अनुसार अपना उपचार
 भी कराना चाहिए।
- वयस्कों के लिये अपने साथी के प्रति वफादार रहें तथा निरोध का सही एवं सदैव प्रयोग करें।
- सुनिश्चित करें कि आपके द्वारा प्रयोग में लाये जाने वाली सुई/इंजेक्शन या आपकी त्वचा
 को बेधने वाले सभी उपकरण विसंक्रमित किये जा चुके हैं।
- * विसंक्रमित सुइयों द्वारा रक्त-दान सुरक्षित है।
- सुनिश्चित करें कि चढ़ाये जाने वाले खून की जाँच कर ली गयी है तथा इस पर
 ''एच.आई.वी. रहित/मुक्त'' की मृहर लगी है।
- हमें एड्स प्रभावित महिलाओं की इच्छाओं को जानने में तथा उन्हें चिकित्सा से उपलब्ध कराने में मदद करनी चाहिए।
- माँ द्वारा बच्चे को संक्रमित करने का इलाज सभी सरकारी अस्पतालों में उपलब्ध है। कृपया
 सभी गर्भवती महिलायें अपनी जाँच करवायें तथा आवश्यकतानुसार इलाज करवा लें।
- वयस्कों के लिये अपने साथी के प्रति वफादार रहें तथा निरोध का समुचित एवं सदैव प्रयोग करें।

(143)

साधारण बचाव के उपायों को अपनायें

- * संयम बरतें (सम्भोग से बचें)
- * साथी के प्रति वफादार रहें
- मिरोध का सही व समझदारी भरा इस्तेमाल करें।
 प्रथम सम्भोग में हमेशा निरोध का प्रयोग करें।

आवश्यक सुझाव

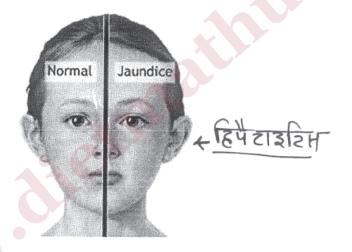
भारतीय युवा : एच.आई.वी. संक्रमण का जोखिम

- * हालांकि, 84% कम से कम बचाव से 2 सही तरीकों के बारे में जानते हैं।
- 73% एच.आई.वी. फैलने के बारे में गलत धारणायें रखते हैं।
- * सिर्फ 55% फैलने के दो तरीकों के बारे में जानते हैं।
- * 50% से कम एड्स के मरीजों के प्रति सकारात्मक दृष्टिकोण रखते हैं।
- * बिहार, झारखण्ड, छत्तीसगढ़ तथा उत्तर प्रदेश में सर्वेक्षण में शामिल 15 से 24 वर्ष की युवा महिलाओं में प्रत्येक तीन में से एक ने एच.आई.वी./एड्स के बारे में सुन रखा था।
- * दर्शाये गये एड्स महामारी के तेज प्रसार तथा युवाओं में जानकारी के अभाव के कारण यह आवश्यक है कि ऐसे कार्यक्रम चलाये जायें जो युवाओं को जानकारी प्रदान करें तथा एच.आई.वी. से बचने के लिये जरूरी क्षमताओं का विकास करें।

यौन संक्रमणों का इलाज एवं रोकथाम

- * संयम (यौन-सम्बन्ध बनाने से बचना)
- स्रित यौन-सम्बन्ध बनाना।
 - एक साथी के प्रति वफादार रहें।
 - मिरोध की सही तरह से सदैव प्रयोग में लायें।
 - अस्थाई या जोखिम भरे सम्बन्ध न बनायें।
 - * अपनी शारीरिक स्वच्छता का ध्यान रखें।
 - दोनों साथियों का सम्पूर्ण एवं सम्चित इलाज करायें।
 - * नीम-हकीम या झोला-छाप डॉक्टरों के पास न जायें।

(144)


मूल संदेश

- * यौन रोग किसी को भी हो सकता है।
- * यौन रोगों का इलाज किया जा सकता है।
- यौन रोगों से अपने आपको बचाने एवं इसके बारे में सही जानकारी प्राप्त करें।

हिपेटाइटिस रोग

Hepatitis एक Viral रोग है जिसे सामान्य भाषा में पीलिया या Jaundice भी कहा जाता है। यह Liver का एक खतरनाक रोग है जिससे भारत में हर वर्ष हजारो लोगों कि मृत्यु हो जाती है। Hepatitis के प्रति लोगों कि अज्ञानता और इसके दुष्प्रभावों को समझने की हमारी विफलता के कारण यह रोग हर साल दुनिया भर में लाखो लोगों को अपना शिकार बना रहा है।

Hepatitis या पीलिया सम्बन्धी अधिक जानकारी नीचे दी गयी है—

क्रिया विधि—

प्रशिक्षु प्रश्न करेंगे—

- हमें भूख नहीं लगती है तो कौन-सा रोग हो सकता है?
- * यदि मूत्र पीले रंग का हो व बार-बार हो तो कौन-सा रोग हो सकता है?
- * Hepatitis के कितने प्रकार हैं?

Hepatitis या विषाणुजन्य पीलिया के प्रमख 5 प्रकार है :

- 1. Hepatitis A
- 2. Hepatitis B

(145)

- 3. Hepatitis C
- 4. Hepatitis D
- 5. Hepatitis E

इन सब में Hepatitis B सबसे खतरनाक माना जाता है। Hepatitis B में यकृत/Liver को क्षिति पहुँच कर रोगी की मृत्यु भी हो सकती है। Hepatitis A, B और C ज्यादा प्रमाण में देखा जाता है।

प्रशिक्षु प्रश्न करें—

Hepatitis के लक्षण क्या है?

अगर त्वचा का रंग पीला सा है, आँखों में पीलापन है और मूत्र/Urine भी पीले रंग का आए तो यह सभीं लक्षण Hepatitis के हो सकते हैं। Hepatitis के अन्य सामान्य लक्षण नीचे दिए गए हैं—

लक्षण—

- 1. बदनदर्द, सरदर्द, कमजोरी या थकान
- 2. भूक कम लगना
- 3. जी मचलाना
- 4. दस्त/Loose Motions लगना या कब्ज/Constipation होना
- 5. बुखार
- 6. पेट में दायीं तरफ, ऊपर कि ओर हल्का दर्द
- 7. खुजली
- 8. जोड़ों में दर्द
- 9. हल्के रंग का मल होना

प्रशिक्षु प्रश्न करेंगे—

Hepatitis किस कारण होता है?

Hepatitis/पीलिया रक्त में Bilirubin की मात्रा बढ़ जाने के कारण होता है। Hepatitis Virus का प्रवेश—निम्नलिखित कारणों से होता है—

1. शरीर में पानी, 2. विषाणुयुक्त सुई, 3.शारीरिक सम्बन्ध, 4. या बच्चे को माँ द्वारा होता है। Hepatitis \mathbf{A} और Hepatitis \mathbf{E} 5. खाने और पानी के द्वारा शरीर में पहुँचता है। Hepatitis \mathbf{A} साधारणः भारत में पाया जाता है इससे महामारी फैलने का खतरा रहता है। Hepatitis \mathbf{E} उन स्थानों पर पाया जाता है जहाँ सफाई आदि का प्रबन्ध ठीक न हो।

(146)

Hepatitis B और C 1. रक्त और रक्त में इस्तेमाल होने वाली वस्तुएँ जैसे सुई का पूरी तरह कीटाणुरिहत न होना, 2. शारीरिक सम्बन्ध बनाने से और 3. माँ से बच्चे को होता है। 4. इसके अलावा Tatoo लगाना, 5. पुराने Razor का इस्तेमाल करना इत्यादि कारणों से भी Hepatitis B और C हो सकता है।

आइये जाने

Hepatitis की चिकित्सा कैसे की जाती है?

सर्वप्रथम आपके रक्त का परिक्षण कर डॉक्टर यह जान सकता है कि आपको किस प्रकार का Hepatitis हुआ है। आपकी चिकित्सा/treatment Hepatitis के प्रकार पर निर्भर होंगे तथा उसमें निम्नलिखित उपचार शामिल हो सकते हैं—

- अगर आपको ज्यादा कमजोरी है तो डॉक्टर आपको दवाखाने में भर्ती होने की सलाह दे सकते हैं
- केवल अपने डॉक्टर द्वारा prescribed दवाओं का ही उपयोग करें। अन्य दवाओं को आपको
 Liver पर बुरा असर पड़ सकता है।
- * आराम करें।
- * शराब का सेवन न करें, क्योंकि इससे आपके Liver की क्षति पहुँचती है।
- * धूम्रपान न करें और कोई और धूम्रपान कर रहा है तो उससे दूर रहे।
- * शुद्ध और स्वच्छ पानी का ही इस्तेमाल करें।
- * डॉक्टर की सलाह अनुसार अपने आहार में बदलाव करें।
- * कम वसा/Fat युक्त और ज्यादा Protein युक्त आहार लेना चाहिए।
- * ज्यादा तेल, घी और मिर्च-मसाले युक्त आहार नहीं देना चाहिए।
- * रोगी को फल, हरी सब्जियाँ और सब्जियों का सूप बनाकर देना चाहिए।

प्रशिक्षु प्रशिक्षणार्थियों को निर्देश देगा

Hepatitis में कौन-से लक्षण दिखाई देने पर तुरन्त डॉक्टर के पास जाना चाहिए?

Hepatitis में निम्नलिखित लक्षण दिखाई देने पर तुरन्त डॉक्टर के पास जाकर इलाज कराना चाहिए। जैसे कि—

- बहुत ज्यादा उल्टी होना जिसमें पानी भी पच नहीं रहा हो।
- * बहुत ज्यादा कमजोरी होना।
- * उल्टी में रक्त आना।

(147)

- काले रंग का मल आना।
- व्यवहार में बदलाव आना।
- * बेहोशी आना।
- शरीर पर सूजन आना।
- लाल रंग का मूत्र आना।

हिपेटाइटिस से बचाव

Hepatitis से बचने के लिये क्या एहतियात बरतें?

Hepatitis से बचने के लिये निम्नलिखित एहतियात बरतें—

- अपने आसपास पूरी तरह से साफ-सफाई बनाए रखें और मिक्ख्याँ को न फैलने दें।
- भोजन पकाने और खाने से पहले तथा शौचालय से लौटने पर हाथों को साबुन या डेटोल
 से अच्छी तरह धोएँ।
- * नाखूनों को समय-समय पर काटते रहें।
- * पानी में क्लोरीन की गोलियाँ मिलाकर प्रयोग करें।
- बरसात के दिनों में और महामारी के समय पर हमेशा पानी को लगभग 10 से 15 मिनट तक उबालने के बाद ही प्रयोग में लाएँ।
- बाजार के कटे फल और सिब्जियाँ न खाएँ। घर में भी सब्जी और फलों को अच्छी तरह धोकर ही प्रयोग करें।
- * ठण्डा नींबू पानी या शर्बत आदि बनाने के लिए जहाँ तक हो सके घर के फ्रिज में जमाई हुई बर्फ का ही प्रयोग करें। बाहर से लाई हुई बर्फ का प्रयोग पीने वाले पदार्थों में न करें।
- अगर आप माँ बनने वाली है तो प्रथम Hepatitis Virus की जाँच करा लेना चाहिए।
 अगर आपकी जाँच Hepatitis के लिए Negative आती है तब भी आप Hepatitis का
 Vaccine लगा कर आने वाले बच्चे की सुरक्षा सुनिश्चित कर सकते हैं।
- 🄻 अपने बच्चों को भी डॉक्टर की सलाह अनुसार Hepatitis का वैक्सीन लगाना चाहिए।
- Hepatitis से ग्रसित व्यक्तियों के कपड़े, बिछावन इत्यादि अलग से गर्म पानी में साफ करे। Hepatitis ग्रसित व्यक्ति से या अपरिचित के साथ असुरक्षित यौन सम्बन्ध न करें।
- ध्यान रहे कि Hospital में कभी भी आपके लिए नीरजन्तुक और सिर्फ नयीसुई का ही
 प्रयोग होना चाहिए।
- हमेशा अपनी रोग प्रतिकारशक्ति को बढ़ाना चाहिये।

(148)

मूल्यांकन प्रश्न

वस्तुनिष्ठ प्रश्न

- 1. रुधिर आधान में कौन-सा रुधिर सर्वग्राही है?
 - (**क**) A

(ख) B

(刊) AB

- (घ) O
- 2. शरीर में आये हुए हानिकारक जीवाणुओं को कौन-सी रुधिर कणिकायें नष्ट करती हैं?
 - (क) श्वेत रुधिर कणिका

(ख) लाल रुधिर कणिका

(ग) प्लेटलेटस

(घ) हीमोग्लोबिन

- 3. Rh-कारक हैं—
 - (क) प्रतिजन

(ख) प्रतिरक्षी

(ग) अधिषाण्

- (घ) प्लाज्मा
- 4. एक मनुष्य का रक्त वर्ग 'O' है इसे किस रक्त वर्ग का रक्त दिया जा सकता है—
 - (क) 'A' वर्ग का

(ख) 'B' वर्ग का

(ग) 'AB' वर्ग का

(घ) 'O' वर्ग का

- 5. रुधिर का तरल भाग है—
 - (क) प्लाज्मा

(ख) रुधिर कणिकायें

(ग) हीमोग्लोबिन

(घ) लिम्फोसाइट्स

अतिलघु उत्तरीय प्रश्न

- 1. क्या \mathbf{B}^- रुधिर की \mathbf{B}^+ रुधिर वर्ग वाले मनुष्य को दिया जा सकता है?
- 2. मनुष्य में पाये जाने वाले सर्वदाता एवं सर्वग्राही रुधिर समूह का नाम लिखिये।
- 3. रुधिर वर्ग का पता किसने लगाया था?
- 4. मनुष्य में रुधिर का निर्माण कहाँ होता है?
- 5. AB रुधिर वर्ग के रोगी को किस वर्ग का रुधिर दिया जा सकता है?

लघु उत्तरीय प्रश्न

- 1. हीमोग्लोबिन तथा ऑक्सी हीमोग्लोबिन में क्या अन्तर है?
- 2. Rh-प्रतिजन क्या है? इसकी खोज किस वैज्ञानिक ने किया?
- 3. रुधिर दाब किसे कहते हैं?
- 4. रुधिर का थक्का बनने की क्रिया स्पष्ट कीजिये।
- 5. Rh-तत्व क्या है? समझाइये।

(149)

निबन्धात्मक प्रश्न

- रुधिर कणिकाएँ कितने प्रकार की होती है? विभिन्न रुधिर कणिकाओं की संरचना एवं कार्य का वर्णन कीजिये।
- 2. रुधिर की संरचना तथा कार्यों का वर्णन कीजिये।
- 3. रुधिर के कार्य लिखिये।
- 4. Rh-Factor से आप क्या समझते हैं? विस्तार में वर्णन कीजिये।
- ्रशही १ वताइये। मनुष्य में कितने प्रकार के रुधिर समूह पाये जाते हैं? सर्वदाता एवं सर्वग्राही रुधिर-समूहों का नाम 5.